ap
An International Peer Reviewed Research Journal
AJP
SSN : 0971 - 3093
Vol 25, No 9, September, 2016
25th Anniversary Year of AJP-2016
Special issue
on
Advances in High Precision Spectroscopy and
Tests of Fundamental Physics,
Part-1
Edited by
Bijaya Kumar Sahoo
Asian Journal of Physics
(A Publication Not for Profit)
Vol. 25, No 9 (2016)
CONTENTS
Guest Editorial
About the Guest Editor
Prospect of molecular clocks
Masatoshi Kajita 1051
Oscillation frequencies for simultaneous trapping of heteronuclear alkali atoms
Kiranpreet Kaur, B K Sahoo and Bindiya Arora 1061
Singly charged ions for optical clocks
N Batra, A Roy, S Majhi, S Panja and S De 1069
Permanent EDM measurement in Cs using nonlinear magneto-optic rotation
Harish Ravi, Mangesh Bhattarai, Abhilash Y D, Ummal Momeen* and Vasant Natarajan 1093
Precise many-electron calculations of isotope shift for alkali like atoms or ions
Sourav Roy, Anal Bhowmik and Sonjoy Majumder 1103
Energy level crossing of highly charged ions for optical clocks
Yan-mei Yu and Bing-bing Suo 1119
The magnetic moment of the bound electron
G Werth and S Sturm 1143
Computational methods for high-precision spectroscopy of three-electron atomic systems
Liming Wang, Chun Li, and Zong-Chao Yan 1161
Precision measurements based on 40Ca+ ion optical frequency standards
Hua Guan, Yao Huang, Cheng-bin Li, Li-yan Tang, and Ke-lin Gao 1207
Precision physics with molecules
Amar C
Vutha
1233
Asian Journal of
Physics
Vol. 25 No 9, 2016 1051-1059
Prospect of molecular clocks
Masatoshi Kajita
National Institute of Information and Communications Technology
Koganei, Tokyo 184-8795, JAPAN
___________________________________________________________________________________________________________________________________
While uncertainties of some of the atomic transition frequencies have been reduced to the level of 10–8, the molecular transition frequencies are currently diffcult to be measured with the uncertainty below 10–15. This is mainly because of the complicated energy levels of the molecules having the vibrational-rotational states. This paper lists some molecular transition frequencies, which can be measured with the uncertainties lower than 10–16. © Anita Publications. All rights reserved.
Keywords: Precise measurement, Cold molecules, Molecular ion
Total Refs : 45
1. Hasegawa A, Fukuda K,
Kajita M, Ito H, Kumagai M, Hosokawa M, Morikawa T,
Metrologia, 41(2004)257-263.
2. Heavner T P, Donley E A,
Levi F, Costanzo G, Parker T E, Shirley J H, Ashby N, Barlow S,
Jefferts S R, Metrologia, 51 (2005)174-182.
3. Diddams S, Jones D, Ye J,
Cundiff S T, Hall J L, Ranka J, Windeler R, Holzwarth R, Udem T,
Hänsch T, Phys Rev Lett, 84(2000)5102-5105.
4. Dehmelt H, IEEE Trans
Instrum Meas, 31(1982)83-87.
5. Chou C W, Hume D B,
Koelemeij J C J, Wineland D J, Rosenband T,
Phys Rev Lett, 104(2010) 070802-070806.
6. Huntemann N, Sanner
C, Lipphardt B, Tamm Chr, Peik E, Phys Rev Lett,
116(2016)063001-063006.
7. Ushijima I, Takamoto M, Das
M, Ohkubo T, Katori H, Nature Photo, 9(2015)185-189.
8. Nicholson T, Cambell S, Hutson R,
Marti G, Bloom B, McNally R, Zhang W, Barrett M, Saonova M,
Strouse G, Tew W, Ye J, Nature Communications, 6(2015)6896;
doi:10.1038/ncomms7896.
9. Rosenband T, Hume D B,
Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R
E, Fortier T M, Stalnaker J E, Diddams S A , Swan W C, Newbery N R,
Itano W M , Wineland D J, Bergquist J C,
Science,319(2008)1808-1812.
10. Godun R M, Nisbet-Jones P B R, Jones J
M, King S A, Johnson L A M, Margolis H S, Szymaniec K, SLea S
N, Bongs K, Gill P,
Phys Rev Lett, 113(2014)210801;
doi.org/10.1103/PhysRevLett.113.210801
11. Huntemann N, Lipphardt B, Tamm Chr,
Gerginov V, Weyers S, Peik E, Phys Rev Lett, 113(2014)210802;
doi.org/10.1103/PhysRevLett.113.210802
12. Hong F.-L, Onae A, Jiang J, Guo
R, Inaba H, Minoshima K, Schibli T R, Matsumoto H, Nakagawa K, Opt
Lett, 28(2003)2324-2326.
13. Shelkovnikov A, Butcher R J,
Chardonnet C, Amy-Klein A, Phys Rev Lett, 100(2008)150801;
http://dx.doi. org/10.1103/PhysRevLett.100.150801.
14. Weinstein J D, deCarvalho R, Guillet
T, Friedrich B, Doyle J M, Nature (London), 395(1998)148-150.
15. Bethlem H L, Berden G, Crompvoets F M
H, Jongma R T, van Roij A J A, Meijer G, Nature,
406(2000)491-494.
16. Crompvoets F M H, Bethlem H L, Jongma
R T, Meijer G, Nature, 411(2001)174-176.
17. Norrgard E B, McCarron D J, Steinecker
M H, Tarbutt M R, DeMille D, Phys Rev Lett, 116(2016)063004, 1-6;
doi: 10.1103/PhysRevLett.116.063004.
18. Prehn A, Ibruegger M, Gloeckner R,
Rempe G, Zeppenfeld M, Phys Rev Lett, 116(2016)063005, 1-6. doi:
10.1103/ PhysRevLett.116.063005
19. Fioretti A, Amiot C, Dion C M, Dulieu
O, Mazzoni M, Smirne G, Gabbanini C, Euro Phys J D,
15(20001)189-198.
20. Ulmanis J, Deiglmayr J, Repp M,
Wwester R, Weidemueller M, Chem Rev, 112(2012)4890-4927.
21. Donley E A, Claussen N R, Thomson S T,
Wieman C E , Nature (London), 417(2002)529-533.
22. Aikawa K, Akamatsu D, Hayashi M, Oasa
K, Kobayashi J, Naidon P, Kishimoto T, Ueda M, Inouye S, Phys Rev
Lett, 105(2010)203001, 1-4;
doi: 10.1103/PhysRevLett.105.203001
23. Ni K.–K, Ospelkaus S, de Miranda M H
G, Pèer A, Neyenhuis B, Zierbel J J, Kotochigova S, Julienne P S,
Jin D S, Ye J, Science, 322(2008)231-235.
24. Koelemeij J C J, Roth B, Wicht A,
Ernsting I, Schiller S, Phys Rev Lett, 98(2007)173002, 1-4;
doi:10.1103/ PhysRevLett.98.173002.
25. Kajita M, Moriwaki Y, J Phys B: At
Mol Opt Phys, 42(2009)154022, 1-6;
doi:10.1088/0953-4075/42/15/154022
26. Kajita M, Abe M, Hada M,
Moriwaki Y, J Phys B: At Mol Opt Phys, 44(2011)02540, 1-7; doi:
10.1088/0953-4075/44/2/025402
27. Schneider T, Roth B, Dunker H, Ersting
I, Schiller S, Nature Phys, 6(2010)275-278.
28. Schmidt P O, Rosenband T, Langer C,
Itano W M, Bergquist J C, Wineland D J, Science,
309(2005)749-752.
29. Yudin V I, Taichenachev A V, Oates C
W, Barber Z W, Lemke N D, Ludlow A D, Sterr U, Lisdat Ch,
Riehle F, Phys Rev A, 82 (2010) 011804 (R) 1-4;
doi: 10.1103/PhysRevA.82.011804.
30. Hobson R, Bowden W, King S A, Baird P
E, Hill I R, Gill P, Phys Rev A, 93(2016)010501 (R) 1-5; doi:
10.1103/ PhysRevA.93.010501
31. Kajita M, Abe M, J Phys B: At Mol Opt
Phys, 45(2012)185401, 1-5;
doi:10.1088/0953-4075/45/18/185401.
32. Khanyile N B, Shu G, Brown K, Nature
Communications, 6(2015)7825; doi:10.1038/ncomms8825.
33. Kajita M, Gopakumar
G, Abe M, Keller M,
Phys Rev A , 89(2014)032509,1-6; doi:
10.1103/ PhysRevA.89.032509
34. Mur-Petit J, Garcia-Ripoll J J,
Perez-Rios J, Compos-Martinez J, Hernandez M I, Willitsch S, Phys
Rev A, 85 (2012)022308,
1-8; doi:10.1103/PhysRevA.85.022308
35. Germann M, Tong X, Willitsch S, Nature
Phys, 10(2014)820-824.
36. Kajita M, Phys Rev A, 92(2015)043423,
1-6; doi: 10.1103/PhysRevA.92.043423
37. Zelevinsky T, Kotochigova S, Ye J,
Phys Rev Lett, 100(2008)043201, 1-4; doi:
10.1103/PhysRevLett.100.043201
38. Kotochigova S, Zelevinsky T, Ye J,
Phys Rev A, 79(2009)012504, 1-7; doi:
10.1103/PhysRevA.79.012504
39. Kajita M, Gopakumar G, Abe M, Hada M,
Phys Rev A, 84(2011022507, 1-6; doi:
10.1103/PhysRevA.84.022507
40. Kajita M, Gopakumar G, Abe M, Hada M,
J Phys B: At Mol Opt Phys, 46(2013)025001, 1-5; doi: 10.1088/0953-
4075/46/2/025001
41. Ivanova M, Stein A, Pashov A,
Stolyarov A V, Knoeckel H, Tiemann E, J Chem. Phys,
135(2011)174303, 1-10; doi:10.1063/1.3652755.
42. Krois G, Pototshinig J V, Lackner F,
Ernst W, J Phys Chem A, 117(2013)13719-13731; doi:
10.1021/jp407818k
43. Hara H, Takasu Y, Yamaoka Y, Doyle J
M, Takahashi Y, Phys Re Lett, 106(2011)205304, 1-4; doi: 10.1103/
PhysRevLett.106.205304
44. Kajita M, Gopakumar G, Abe M, Hada M,
J Mol Spectrosc, 300 (2014)99-107.
45. Biesheuvel J, Karr J -Ph, Hilico L, Eikema K S E, Ubachs
W, Koelemeij J C J, Nature Com, 7(2016)10385, 1-7;
doi:10.1038/ncomms10385
___________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 25 No 9, 2016, 1061-1068
Oscillation frequencies for simultaneous trapping of heteronuclear alkali atoms
Kiranpreet Kaura, B K Sahoob and Bindiya Aroraa*
aDepartment of Physics, Guru Nanak Dev University, Amritsar, Punjab-143 005, India
bTheoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahemadabad-380 009, India
___________________________________________________________________________________________________________________________________
We investigate oscillation frequencies for simultaneous trapping of more than one type of alkali atoms in a common optical lattice. For this purpose, we present numerical results for “magic” trapping conditions, where the oscillation frequencies for two different kinds of alkali atoms using laser lights in the wavelength range 500-1200 nm are same. These wavelengths will be of immense interest for studying static and dynamic properties of boson-boson, boson-fermion, fermion-fermion, and boson-boson-boson mixtures involving different isotopes of Li, Na, K, Rb, Cs and Fr alkali atoms. In addition to this, we were also able to locate a magic wavelength around 808.1 nm where all the three Li, K, and Rb atoms are found to be suitable for oscillating at the same frequency in a common optical trap.
Total Refs: 53
1. Annual Review
of Cold Atoms and Molecules, (eds) K. WMadison, Y. Wang, A. M. Rey,
K. Bongs, Vol. 1. (World Scientific Publication), 2013.
2. BlochI , Nature
Phys, 1, (2005) 23.
3. Inouye S, J.
Goldwin J, Olsen M L, Ticknor C, Bohn J L, Jin D S, Phys. Rev.
Lett, 93(2004), 183201.
4. P. P. Orth, D. L.
Bergman, and K. L. Hur, Phys. Rev. A 80, 023624 (2009).
5. F. Schreck, L.
Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles,
and C. Salomon, Phys. Rev. Lett. 87, 080403 (2001).
6. Z. Hadzibabic,
C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. Gorlitz,
and W. Ketterle, Phys. Rev. Lett. 88, 160401 (2002).
7. G. Modugno, G.
Roati, F. Riboli, F. Ferlaino, R. J. Brecha, and M. Inguscio,
Science 297, 2240 (2002).
8. C. A. Stan, M.
W. Zwierlein, C. H. Schunck, S. M. F. Raupach, and W. Ketterle,
Phys. Rev. Lett. 93, 143001 (2004).
9. C. Ebner and D.
Edwards, Phys. Rep. 2C, 77 (1970).
10. K. Mølmer, Phys. Rev.
Lett. 80, 1804 (1998).
11. E.Timmermans and R.Cˆot´e,
Phys. Rev. Lett. 80, 3419 (1998).
12. R. Ejnisman, P. Rudy, N.
P. Bigelow, P. S. P. Cardona, A. M. Tuboy, D. M. B. P. Milori, V.
S. Bagnato, and I. D. Goldman, Braz. J. Phys. 27, 247 (1997).
13. M. S. Safronova, B. Arora,
and C. W. Clark, Phys. Rev. A 73, 022505 (2006).
14. B. K. Sahoo and B. Arora,
Phys. Rev. A 87, 023402 (2013).
15. B. Arora and B. K. Sahoo,
Phys. Rev. A 86, 033416 (2012).
16. U. Dammalapati, K. Harada,
and Y. SakemiPhys. Rev. A 93, 043407 (2016).
17. U. Schloder, H. Engler, U.
Schunemann, R. Grimm, and M. Weidmuller, Eur. Phys. J. D 7, 331-340
(1999).
18. M.S. Santos, P.
Nussenzveig, L.G. Marcassa, K. Helmerson, J. Fleming, S.C. Zilio,
and V.S. Bagnato, Phys. Rev. A 52, R4340 (1995).
19. J.P. Shaffer, W.
Chapulpczak, and N.P. Bigelow, Phys. Rev. Lett. 82, 1124
(1999).
20. B. K. Sahoo, D. K. Nandy,
B. P. Das and Y. Sakemi, Phys. Rev. A 91, 042507 (2015).
21. B. K. Sahoo, Phys. Rev. A
92, 052506 (2015).
22. B. K. Sahoo and B. P. Das,
Phys. Rev. A 92, 052511 (2015).
23. Y. Sakemi, K. Harada, T.
Hayamizu, M. Itoh, H. Kawamura, S.Liu, H. S. Nataraj, A. Oikawa, M.
Saito, T. Sato, H. P. Yoshida,T. Aoki, A. Hatakeyama, T. Murakami,
K. Imai, K. Hatanaka,T.Wakasa, Y. Shimizu, and M. Uchida, J. Phys.:
Conf. Ser. 302,012051 (2011).
24. E. Gomez, S. Aubin, G. D.
Sprouse, L. A. Orozco and D. P. DeMille, Phys. Rev. A 75, 033418
(2007).
25. C. Ekstr¨om, L.
Robertsson, and A. Ros´en, PhysicaScripta34, 624 (1986).
26. J. E. Simsarian, W. Z.
Zhao, L. A. Orozco, and G. D. Sprouse, Phys. Rev. A 59, 195
(1999).
27. J. E. Simsarian, L. A.
Orozco, G. D. Sprouse, and W. Z. Zhao, Phys. Rev. A 57, 2448
(1998).
28. S. Aubin, E. Gomez, L. A.
Orozco, and G. D. Sprouse, Phys. Rev. A 70, 042504 (2004).
29. E. Gomez, L. A. Orozco, A.
P. Galvan, and G. D. Sprouse, Phys. Rev. A 71, 062504 (2005).
30. R. Collister, G. Gwinner,
M. Tandecki, J. A. Behr, M. R. Pearson, J. Zhang, L. A. Orozco, S.
Aubin, E. Gomez, Fr PNC Collaboration, et al.,
Phys. Rev. A 90, 052502 (2014).
31. S. Sanguinetti et al.,
Opt. Lett. 34, 893 (2009).
32. B. K. Sahoo, T. Aoki, B.
P. Das and Y. Sakemi, Phys. Rev. A 93, 032520 (2016).
33. Sahoo B K, J Phys B,
43(2010)085005.
34. Dzuba V A, FlambaumV V,
Sushkov O P, Phys Rev A, 51, 3454 (1995).
35. M. Marinescu, D.
Vrinceanu, and H. R. Sadeghpour, Phys Rev A, 58, R4259
(1998).
36. M. S. Safronova, W. R.
Johnson, and A. Derevianko, Phys Rev A , 60, 4476 (1999).
37. M. S. Safronova and W. R.
Johnson, Phys Rev A , 62, 022112 (2000).
38. Mukherjee D, Sahoo B K,
Nataraj H S, Das B P, J Phys Chem A, 113(2009)12549.
39. M. Taglieber, A. –C.
Voigt, T. Aoki, and K. Dieckmann, Phys Rev Lett, 100, 010401
(2008).
40. B. Arora, D. K. Nandy, and
B. K. Sahoo, Phys. Rev. A 85, 012506 (2012).
41. U. Volz and H.
Schmoranzer, Phys. Scr. T 65, 48 (1996).
42. R. J. Rafac, C. E. Tanner,
A. E. Livingston and H. G. Berry, Phys. Rev. A 60, 3648
(1999).
43. J. Kaur, D. K. Nandy, B.
Arora and B. K. Sahoo, Phys. Rev. A 91, 012705 (2015).
44. L.-Y. Tang, Z.-C. Yan,
T.-Y. Shi, and J. Mitroy, Phys. Rev. A 81, 042521 (2010).
45. A. J. Thakkar and C.
Lupinetti, Chem. Phys. Lett 402, 270 (2005).
46. U. I. Safronova, W. R.
Johnson, and M. S. Safronova, Phys. Rev. A 76, 042504 (2007).
47. J. Mitroy and M. W. J.
Bromley,Phys. Rev. A 68, 052714 (2003).
48. A. Borschevsky, V.
Pershina, E. Eliav, and U. Kaldor, J. Chem. Phys. 138, 124302
(2013).
49. A. Derevianko, W. R.
Johnson, M. S. Safronova, and J. F. Babb, Phys. Rev. Lett. 82, 3589
(1999).
50. A. Miffre, M. Jacquey, M.
B¨uchner, G. Trenec, and J. Vigue, Eur. Phys. J. D 38, 353
(2006).
51. C. R. Ekstrom, J.
Schmiedmayer, M. S. Chapman, T. D. Hammond, and D. E. Pritchard,
Phys. Rev. A 51, 3883 (1995).
52. W. F. Holmgren, M. C.
Revelle, V. P. A. Lonij, and A. D. Cronin,Phys. Rev. A 81, 053607
(2010).
53. Amini J M, Gould H, Phys
Rev Lett, 91(2003), 153001
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol. 25 No 9, 2016,1069-1092
Singly charged ions for optical clocks
N Batra1,2, A Roy2, S Majhi2, S Panja1,2 and S De1,2
1Academy of Scientic and Innovative Research (AcSIR),
CSIR- National Physical Laboratory (CSIR-NPL) Campus, New Delhi, India
2CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012, India.
___________________________________________________________________________________________________________________________________
In modern era atomic clocks are the most accurate instruments given by the scientific community which use State-of-the-Art cooling and trapping technologies. Atomic clocks at the optical frequencies are new addition in the last one decade which provide 1s accuracy over the age of the universe. Neutral atoms in optical lattices and single ion in a Paul trap are the two well established techniques for optical frequency standards. In this article we focus on the atomic ions optical frequency standards. Recent worldwide developments, different choice of the species and associated dominant systematics have been discussed in this review. © Anita Publications. All rights reserved.
Keywords: Atomic clocks, Frequency standards, Optical frequency standards, Optical lattice, Ion trap, Systematic shifts, Precision measurement.
Total Refs: 150
1. Taylor B N, The
International System of Units (SI) (U.S. Government Printing Oce,
Gaithersburg, Maryland), 2001.
2. Heavner T P, Donley E A,
Levi F, Costanzo G, Parker T E, Shirley J H, Ashby N, Barlow S,
Jeerts S R, Metrologia, 51(2014)174-182.
3. Turyshev S G, From Quantum
to Cosmos: Fundamental Physics Research in Space, (World Scientic,
Singapore), 2009.
4. Morhr P J, Newell D B,
Taylor B N, CODATA Recommended Values of the Fundamental Physical
Constants: 2014, doi: org/10.5281/zenodo.22826 (2015).
5. Morhr P J, Taylor B N, Rev
Mod Phys, 72(2000)351; doi:org/10.1103/RevModPhys.72.351
6. Wense L V, Seiferle B,
Laatiaoui M, Neumayr J B, Maier H J, Wirth H F, Mokry C, Runke J,
Eberhardt K, Düllmann C E, Trautmann N G,
Thirolf P G, Nature, 533(2016)47; doi:10.1038/nature17669
7. Katori H, Ido T, Gonokami M
K, J Phys Soc Jpn, 68(1999)2479-2482.
8. McKeever J, Buck J R,
Boozer A D, Kuzmich A, Nagerl H C, Kurn D M S, Kimble H J, Phys Rev
Lett, 90(2003)133602;
doi.org/10.1103/PhysRevLett.90.133602.
9. A D Ludlow, Boyd M M, Ye J,
Peik E, Schmidt P O, Rev Mod Phys, 87(2015)637;
doi:org/10.1103/RevModPhys.87.637
10. Katori H, Takamoto M, Palchikov V G,
OvsiannikovV D, Phys Rev Lett, 91(2003)s173005;
doi:org/10.1103/PhysRevLett.91.173005.
11. Dehmelt H G, IEEE Trans Instrum Meas,
31(1982)83-87.
12. Takamoto M, Katori H, Phys Rev Lett,
91(2003)223001; doi:org/10.1103/PhysRevLett.91.223001.
13. Ludlow A D, Boyd M M, Zelevinsky T,
Foreman S M, Blatt S, Notcutt M, Ido T, Ye J, Phys Rev Lett,
96, (2006)033003;
doi: 10.1103/PhysRevLett.96.033003.
14. Baillard X, Fouche M, Targat R Le,
Westergaard P G, Lecallier A, Coq Y Le, Rovera G D, Bize S, Lemonde
P, Opt Lett, 32(2007)1812;
doi:org/10.1364/OL.32.001812.
15. Akatsuka T, Takamoto M, Katori H, Nat
Phys, 4(2008)954; doi:10.1038/nphys1108
16. Ludlow A D, Zelevinsky T, Campbell G
K, Blatt S, Boyd M M, de Miranda M H G, Martin M J, Thomsen J W,
Foreman S M, Ye J, Fortier T M,
Stalnaker J E, Diddams S A, Le Coq Y, Barber Z W, Poli N, Lemke N
D, Beck K M, Oates C W, Science, 319(2008)1805; doi:
10.1126/science.1153341
17. Yamaguchi A, Fujieda M, Kumagai M,
Hachisu H, Nagano S, Li Y, Ido T, Takano T, Takamoto M,
Katori H, Appl Phys Express,
4(2011)082203; doi:org/10.1143/APEX.4.082203
18. Falke S, Schnatz H, Winfred J S R V,
Middelmann T, Vogt S, Weyers S, Lipphardt B, Grosche G, Riehle F,
Sterr U, Lisdat C, Metrologia,
48(2011)399; doi:org/10.1088/0026-1394/48/5/022
19. Hong F-L, Musha M, Takamoto M, Inaba
H, Yanagimachi S, Takamizawa A, Watabe K, Ikegami T, Imae M, Fujii
Y, Amemiya M, Nakagawa K,
Ueda K, Katori H, Opt Lett, 34(2009)692;
doi:org/10.1364/OL.34.000692.
20. Ushijima I, Takamoto M, Das M,
Ohkubo T, Katori H, Nature Photonics, 9(2015)185;
doi:10.1038/nphoton.2015.5
21. Porsev S G, Derevianko A, Fortson E N,
Phys Rev A, 69(2004)021403(R);
doi:org/10.1103/PhysRevA.69.021403.
22. Park C Y, Yoon T H, Phys Re A,
68(2003)055401; doi:org/10.1103/PhysRevA.68.055401.
23. Maruyama R, Wynar R H, Romalis M
V, Andalkar A, Swallow M D, Pearson C E, Fortson E N, Phys
Rev A, 68(2003)011403;
doi:org/10.1103/PhysRevA.68.011403 .
24. Hoyt C W, Barber Z W, Oates C W,
Fortier T M, Diddams S A, Hollberg L, Phys Rev Lett,
95(2005)083003; doi: 10.1103/PhysRevLett.95.083003.
25. Kohno T, Yasuda M, Hosaka K, Inaba H,
Nakajima Y, Hong F L, Appl Phys Express, 2(2009)072501;
doi:org/10.1143/APEX.2.072501.
26. Nevsky A Y, Bressel U, Ernsting I,
Eisele C, Okhapkin M, Schiller S, Gubenko A, Livshits D, Mikhrin S,
Krestnikov I, Kovsh A,
Appl Phys B, 92(2008)501; doi:10.1007/s00340-008-3113-4.
27. Pizzocaro M, Costanzo G, Godone A,
Levi F, Mura A, Zoppi M, Calonico D, IEEE Trans Ultrason
Ferroelectr.Freq Control,
59(2012)426; doi:10.1109/TUFFC.2012.2211
28. Beloy K P, Hinkley N M, Phillips N B,
Sherman J A, Schioppo M, Lehman J H, Feldman A D, Hanssen L M,
Oates C W, Ludlow A D,
Phys Rev Lett,113 (2014)260801;
doi:org/10.1103/PhysRevLett.113.260801
29. Hachisu H, Miyagishi K, Porsev S,
Derevianko A, Ovsiannikov V, Palćhikov V, Takamotoand M, Katori H,
Phys Rev Lett, 100(2008)053001;
doi: org/10.1103/PhysRevLett.100.053001
30. Yi L, Mejri S, McFerran J J, Coq Y Le,
Bize S, Phys Rev Lett, 106(2011)073005;
doi:org/10.1103/PhysRevLett.106.073005.
31. Yamanaka K, Ohmae N, Ushijima I,
Takamoto M, Katori H, Phys Rev Lett, 114(2015)230801; doi:
10.1103/PhysRevLett.114.230801.
32. De S, Batra N, Chakraborty S, Panja S,
Sen Gupta A, Curr Sci, 106(2014)1348-1352.
33. Wineland D J, Dehmelt H, Bull Am Phys
Soc, 20(1975)637.
34. Hänsch T W, Schawlow A L, Opt Comm,
13(1975)68-69.
35. Wineland D, Drullinger R E, Walls F L,
Phys Rev Lett, 40(1978)1639;
doi:org/10.1103/PhysRevLett.40.1639
36. Neuhauser W, Hohenstatt M, Toschek
P, Dehmelt H, Phys Rev Lett, 41(1978)233;
doi:org/10.1103/PhysRevLett.41.233
37. Neuhauser W, Hohenstatt M, ToschekP E,
Dehmelt H, Phys Rev A, 22(1980)1137;
doi:org/10.1103/PhysRevA.22.1137
38. Wineland D J, Itano W M, Phys Lett A,
82(1981)75-78.
39. Stenholm S, Rev Mod Phys, 58(1986)699;
doi:org/10.1103/RevModPhys.58.699
40. Paul W, Raether M, Z Physik
140(1955)262; doi:10.1007/BF01328923.
41. Raizen M G, Gilligan J M, Bergquist J
C, Itano W M, Wineland D J, Phys Rev A, 45(1992)6493;
doi:org/10.1103/PhysRevA.45.6493.
42. Rastogi A, Batra N, Roy A, Thangjam J,
Kalsi V P S, Panja S, De S, Mapan, 30(2015)169-174;
doi:10.1007/
s12647-015-0140-6
43. Schrama C A, Peik E, Smith W W,
Walther H, Opt Comm, 101(1993)32-36.
44. Dehmelt H G, Toschek P, Bull Am Phys
Soc [2],, 20(1975)61; https://arxiv.org/pdf/1407.3493.pdf.
45. Dehmelt H G, Walther H, Bull Am Phys
Soc, 20(1975)61;
https://arxiv.org/pdf/1407.3493.pdf.
46. Chou C W, Hume D B, Koelemeij J C J,
Wineland D J, Rosenband T, Phys Rev Lett, 104(2010)070802; doi:
org/10.1103/PhysRevLett.104.070802.
47. Rosenband T, Hume D B, Schmidt P O,
Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T
M, Stalnaker J E, Diddams S A,
Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C,
Science, 319(2008)1808-1812.
48. Larson D J, Bergquist J C, Bollinger J
J, Itano W M, Wineland D J, Phys Rev Lett, 57(1986)70;
doi:org/10.1103/PhysRevLett.57.70.
49. Wubbena J B, Amairi S, Mandel O,
Schmidt P O, Phys Rev A, 85(2012)043412;
doi:org/10.1103/PhysRevA.85.043412.
50. Cirac J I, Zoller P, Phys Rev Lett, 74
(1995)4091; doi:org/10.1103/PhysRevLett.74.4091.
51. Barton P A, Donald C J S, Lucas D M,
Stevens D A, Steane A M, Stacey D N, Phys Rev A, 62(2000)032503;
doi: org/10.1103/PhysRevA.62.032503
52. Chwalla M, Benhelm J, Kim K, Kirchmair
G, Monz T, Riebe M, Schindler P, Villar A S, Hänsel W, Roos C
F, Blatt R, Abgrall M, Santarelli G,
Rovera G D, Laurent Ph, Phys Rev Lett, 102(2009)023002;
doi:org/10.1103/PhysRevLett.102.023002.
53. Guan H, Huang Y, Liu Pei-Liang, Bian
W, Shao H, Gao Ke-Lin, Chinese Physics B,
24(2015)0542131-05421314.
54. KeLin G, Chinese Sci Bull,
58(2013)853; doi:10.1007/s11434-012-5646-5
55. Huang Y, Cao J, Liu P, Liang K, Ou B,
Guan H, Huang X, Li T, Gao K, Phys Rev A, 85(2012)030503; doi:
org/10.1103/PhysRevA.85.030503
56. Matsubara K, Hachisu H, Li Y, Nagano
S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M, Opt
Express, 20(2012)22034;
doi: 10.1364/OE.20.022034.
57. Matsubara K, Hayasaka K, Li Y, Ito H,
Nagano S, Kajita M, Hosokawa M, Appl Phys Express, 1
(2008)067011; doi: org/10.1143/APEX.1.067011.
58. Benhelm J, Kirchmair G, Rapol U,
Korber T, Roos C F, Blatt R, Phys Rev A, 75(2007)032506;
doi:org/10.1103/PhysRevA.75.032506
59. Kajita M, Li Y, Matsubara K, Hayasaka
K, Hosokawa M , Phys Rev A, 72(2005)043404;
doi.org/10.1103/PhysRevA.72.043404
60. Champenois C, Houssin M, Lisowski C,
Knoop M, G. Hagel G, M. Vedel, Vedel F, Phys Lett A, 331(2004)298;
doi:org/10.1016/j.physleta.2004.09.008.
61. Boshier M G, Barwood G P, Huang G,
Klein H A, Appl Phys B, 71(2000)51-56.
62. Margolis H S, Barwood G P, Huang G,
Klein H A, Lea S N, Szymaniec K, Gill P, Science,
306(2004)1355;doi: 10.1126/science.1105497
63. Dube P, Madej A A, Bernard J E, Marmet
L, Boulanger J S, Cundy S , Phys Rev Lett, 95(2005)033001; doi:
org/10.1103/PhysRevLett.95.033001
64. Dube P, Madej A A, Zhou Z,
Bernard J E, Phys. Rev. A, 87(2013)023806;
doi:org/10.1103/PhysRevA.87.023806
65. Becker T, Zanthier J, Nevsky A,
Schwedes C, Skvortsov M, Walther H, Peik E, Phys Rev A,
63(2001)051802(R); doi:org/10.1103/PhysRevA.63.051802
66. Zanthier J V, Eichenseer M, Nevsky A
Yu, Okhapkin M, Schwedes Ch, Walther H, Laser Phys,
15(2005)1021-1027.
67. Peik E, Hollemann G, Walther H, Phys
Rev A, 49(1994)402; doi.org/10.1103/PhysRevA.49.402.
68. Peik E, Hollemann G, Walther H, Phys
Scr, T59, 403 (1995).; doi.org/10.1088/0031-8949/1995/T59/055
69. Sherman J, Trimble W, Metz S,
Nagourney W, Fortson N, in 2005 Digest of the LEOS Summer Topical
Meetings, (IEEE), New York, 2005, p. 99;
doi: 10.1109/LEOSST.2005.1528012
70. Pyka K, Herschbach N, Keller J,
Mehlstaübler T E, Appl Phys B, 114(2014)231; doi:
10.1007/s00340-013-5580-5.
71. Li Y, Ohtsubo N, Matsubara K, Nagano
S, Hayasaka K, in Conference on Precision Electromagnetic
Measurements (CPEM 2014), Rio de Janeiro, 2014,
p 60.
72. Liu T, Wang Y H, Elman V, Stejskal A,
Zhao Y N, Zhang J, Lu Z H, Wang L J, Dumke R, Becker Th, Walther
H,Frequency Control Symposium,
(2007) Joint with the 21st European Frequency and Time Forum. IEEE
International; doi: 10.1109/FREQ.2007.4319107.
73. Ramsey N F, Molecular Beams, (Oxford
Univ. Press, London), 1956.
74. Appasamy B, Siemers I, Stalgies Y,
Eschner J, Blatt R , Neuhauser W, Toschek P E, Appl Phys B,
60(1995)473; doi:10.1007/BF01081329
75. Nagourney W, Yu N, Dehmelt H, Opt
Comm, 793(1990)176; doi:org/10.1016/0030-4018(90)90031-N
76. Yu N, Zhao X, Dehmelt H, Nagourney W,
Phys Rev A, 50(1994)2738; doi:org/10.1103/PhysRevA.50.2738.
77. Kleczewski A, Homan M R, Sherman J A,
Magnuson E, Blinov B B, Fortson E N, Phys Rev A, 85(2012)043418;
doi:org/10.1103/PhysRevA.85.043418
78. Koerber T W, Schacht M H, Hendrickson
K R G, Nagourney W, Fortson E N, Phys Rev Lett, 88(2002)143002;
org/10.1103/PhysRevLett.88.143002
79. Sherman J A, Koerber T W, Markhotok A,
Nagourney W, Fortson E N, Phys Rev Lett, 94(2005)243001;
org/10.1103/PhysRevLett.94.243001
80. Fortson N, Phys Rev Lett,
70(1993)2383; doi:org/10.1103/PhysRevLett.70.2383
81. Koerber T W, Schacht M, Nagourney W,
Fortson E N, J Phys B: Mol Opt Phys, 36(2003)637;
doi.org/10.1088/0953-4075/36/3/320
82. Sahoo B K, Chaudhuri R, Das B P,
Mukherjee D, Phys Rev Lett, 96(2006)163003;
doi:org/10.1103/PhysRevLett.96.163003
83. Whitford B G, Siemsen K J, Madej A,
Sankey J D, Opt Lett, 19(1994)356-358.
84. Tamm C, Huntemann N, Lipphardt B,
Gerginov V, Nemitz N, Kazda M, Weyers S, Peik E, Phys Rev A,
89(2014)023820;
doi:org/10.1103/PhysRevA.89.023820.
85. King S A, Godun R M, Webster S A,
Margolis H S, Johnson L A M, Szymaniec K, Baird P E G, Gill
P, New J Phys, 14(2012)013045;
doi:org/10.1088/1367-2630/14/1/013045.
86. Huntemann N, Okhapkin M,
Lipphardt B, Weyers S, Tamm Chr, Peik E, Phys Rev Lett,
108(2012)090801; doi: org/10.1103/PhysRevLett.108.090801.
87. Huntemann N, Sanner B,
Lipphardt B, Tamm Chr, Peik E, Phys Rev Lett, 116(2016)063011;doi:
10.1103/PhysRevLett.116.063001.
88. Hinkley N, Sherman J A,
Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C
W, Ludlow A D, Science, 341(2013)1215-1218.
89. Barrett M D, New J Phys,
17(2015)053024; doi:org/10.1088/1367-2630/17/5/053024
90. Arnold K, Hajiyev E, Paez
E, Lee C H, Barret M D, Bollinger J, Phys Rev A,
92(2015)032108; doi: 10.1103/PhysRevA.92.032108.
91. Paez E, Arnold K J,
Hajiyez E, Barrett M D, Phys Rev A, 93(2016)042112; doi:
10.1103/PhysRevA.93.042112.
92. Arin B S, Lutetium Ion
Spectroscopy, Thesis, National University of Singapore,
(2014).
93. Barrett M D (private
communication).
94. Kozlov A, Dzuba V A,
Flambaum V V, Phys Rev A, 90(2014)042505;
doi:org/10.1103/PhysRevA.90.042505
95. Oskay W, Itano W,
Bergquist J, Phys Rev Lett, 94(2005)163001;
doi:org/10.1103/PhysRevLett.94.163001
96. Oskay W H, Diddams S A,
Donley E A, Fortier T M, Heavner T P, Hollberg L, Itano W M,
Jefferts S R, Delaney M J, Kim K, Levi F,
Parker T E, Bergquist J C, Phys Rev Lett, 97(2006)020801;
doi:org/10.1103/PhysRevLett.97.020801
97. Itano W M, J Res Natl Inst
Stand Technol, 105(2000)829-837.
98. Berkeland D J, Miller J D,
Bergquist J C, Itano W M, Wineland D J, J Appl Phys, 83(1998)10;
doi:org/10.1063/1.367318.
99. Stalnaker J E, Diddams S
A, Fortier T M, Kim K, Hollberg L, Bergquist J C, Itano W M, Delany
M J, Lorini L, Oskay W H, Heavner T P, Jeerts S R,
Levi F, Parker T E, Shirley J, Appl Phys B, 167(2007)89;
doi:10.1007/s00340-007-2762-z.
100. Versolato O O, Wansbeek L
W, Jungmann K, Timmermans R G E, Willmann L, Wilschut H W, Phys Rev
A, 83(2011)043829;
doi: org/10.1103/PhysRevA.83.043829
101. Versolato O O, Giri G S, van den Berg J E,
Böll O, Dammalapati U, van der Hoek D J, Hoekstra S, Jungmann
K, Kruithof W L, Müller S,
Nuñez Portela M, Onderwater C J G, Santra B, Timmermans R G E,
Wansbeek L W, Willmann L, Wilschut H W, Phys Lett A,
375(2011)3130-3134.
102. Versolato O O, Giri G S,
Wansbeek L W, van den Berg J E, van der Hoek D J, Jungmann K,
Kruithof W L, Onderwater C J G, Sahoo B K,
Santra B, Shidling P D, Timmermans R G E, Willmann L, Wilschut H W,
Phys Rev A, 82(R) (2010)010501(R);
doi.org/10.1103/PhysRevA.82.010501.
103. Giri G S, Versolato O O,
van den Berg J E, Böll O, Dammalapati U, van der Hoek D J, Jungmann
K, Kruithof W L, Müller S,
Portela M Nuñez, Onderwater C J G, Santra B, Timmermans R G E,
Wansbeek L W, Willmann L, Wilschut H W, Phys Rev A,
84(2011)020503(R); doi:org/10.1103/PhysRevB.84.020503
104. Dzuba V A, Flambaum V V,
Phys Rev A, 61(2000)034502;
doi:org/10.1103/PhysRevA.61.034502.
105. Versolato O O,
Wansbeek L W, Giri G S et al, Berg J E van den, Hoek D J van der,
Jungmann K, Kruithof W L, Onderwater L C J G, Sahoo, B
K,
Santra B, Shidling P D, Timmermans R G E, Willmann L, Wilschut H W,
Hyperfine Interact, 9(2011)199;
doi:10.1007/s10751-011-0296-6.
106. Wansbeek L W, Sahoo B K ,
Timmermans R G E, Jungmann K, Das B P, Mukherjee D, Phys Rev A,
78(2008)050501R;
doi.org/10.1103/PhysRevA.78.050501
107. Portela M N, Dijck E A,
Mohanty A, Bekker H, van den Berg J E, Giri G S, S. Hoekstra S,
Onderwater C J G, Schlesser S, Timmermans R G E,
Versolato O O, Willmann L, Wilschut H W, Jungmann K, Appl Phys B,
114(2014)173-182; doi: 10.1007/s00340-013-5603-2.
108. Dicke R H, Phys Rev,
89(1953)472; doi.org/10.1103/PhysRev.89.472
109. Riehle F, Frequency
Standards: Basics and Applications, (Wiley-VCH Verlag GmbH Co.
KGaA), 2004.
110. Gill P, Metrologia,
42(2005)S125; doi:org/10.1088/0026-1394/42/3/S13
111. Sobelman I I , Atomic
Spectra and Radiative Transitions, (Springer-Verlag, Berlin),
1979.
112. Edmonds A R, Angular
Momentum in Quantum Mechanics, (Princeton Univ. Press, New Jersey),
1974.
113. Batra N, Sahoo B K, De
S, Chinese Phys B, 25(2016)113703;
doi:org/10.1088/1674-1056/25/11/113703.
114. Schneider T, Peik E, Tamm
C, Phys Rev Lett,
94(2005)230801;doi:org/10.1103/PhysRevLett.94.230801
115. Gabrielse G, Hanneke D,
Kinoshita T, Nio M, Odom B, Phys Rev Lett,
97(2006)030802;doi: org/10.1103/PhysRevLett.97.030802
116. Farajollahi H, Salehi A,
JCAP02(2012)041; doi:org/10.1088/1475-7516/2012/02/041
117. Chou C W, Hume D B,
Rosenband T, Wineland D J, Science,
329(2010)1630-1633.
118. Vutha A C, New J Phys,
17(2015)6; doi.org/10.1088/1367-2630/17/6/063030
119. Blatt S, Ludlow A D,
Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J, Baillard
X, Fouché M, Targat R Le, Brusch A, Lemonde P,
Takamoto M, Hong F.-L, Katori H, Flambaum V V, Phys Rev Lett,
100(2008)140801; doi: org/10.1103/PhysRevLett.100.140801.
120. Wolf P, Bordé Ch J, Clairon A,
Duchayne L, Landragin A, Lemonde P, Santarelli G, Ertmer W, Rasel
E, Cataliotti F S, Inguscio M, Tino G M, Gill P, Klein
H, Reynaud S, Salomon C, Peik E, Bertolami O, Gil P, Páramos J,
Jentsch C, Johann U, Rathke A, Bouyer P, Cacciapuoti L, Izzo
D, Natale P De, Christophe B, Touboul P, Turyshev S G,
Anderson J, Tobar M E, Schmidt-Kaler F, Vigué J, Madej A A,
Marmet L, Angonin M.-C, Delva P, Tourrenc P, Metris G,
Müller H, Walsworth R, Lu Z H, Wang L J, Bongs K, Toncelli A,
Tonelli M, Dittus H, Lämmerzahl C, Galzerano G, Laporta P,
Laskar J, Fienga A, Roques F, Sengstock K, Exp Astron,
23(2009)551-687.
121. Dzuba V A, Flambaum V V,
Safronova M S, Porsev S G, Pruttivarasin T, M A, Häffner H, Nature
Phys, 12 (2016) 465-468; doi: 10.1038/nphys3610
122. Margolis H S,
Contemporary Phys, 51(2010)37; doi:10.1080/00107510903257616
123.Friebe J, Riedmann M, Wübbena T, Pape
A, Kelkar H, Ertmer W, Terra O, Sterr U, Weyers S, Grosche G,
Schnatz H, Rasel E M,
New J Phys, 13(2011)125010;
doi:10.1088/1367-2630/13/12/125010
124. Kulosa A P, Fim D, Zipfel
K H, Rühmann S, Sauer S, Jha N, Gibble K, Ertmer W, Rasel E M,
Safronova M S, Safronova U I, Porsev S G,
Phys Rev Lett, 115(2015)240801; doi:
org/10.1103/PhysRevLett.115.240801
125. Degenhardt C, Stoehr H,
Lisdat C, Wilpers G, Schnatz H, Lipphardt B, Phy Rev A,
72(2005)062111; doi.org/10.1103/PhysRevA.72.062111
126. Wilpers G, Oates C W,
Diddams S A, Bartels A, Fortier T M, Oskay W H, Bergquist J C,
Jefferts S R, Heavner T P, Parker T E, Hollberg L,
Metrologia, 44(2007)146; doi:10.1088/0026-1394/44/2/005
127. Campbell G K, Ludlow A D,
Blatt S, Thomsen J W, Martin M J, de Miranda M H G,
Zelevinsky T, Boyd M M, Ye J, Diddams S A, Heavner T P, Parker T E,
Jefferts S R, Metrologia, 45(2008)539;
doi:org/10.1088/0026-1394/45/5/008
128. Nicholson T L, Campbell S
L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang
W, Barrett M D, Safronova M S, Strouse G F, Tew W
L,
Ye J, Nat Comm, 6(2015)6896; doi: 10.1038/ncomms/7896.
129. Targat R Le, Lorini L,
Coq Y Le, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P,
Rovera D G, Nagórny B, Gartman R, Westergaard P G,
Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent
P, Lemonde P, J. Lodewyck J, Nat Comm, 4(2013)2109; doi:
10.1038/ncomms3109
130. Falke S, Lemke N, Grebing
C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C,
Al-Masoudi A, Häfner S, Vogt S, Sterr U, Lisdat C,
New J Phys, 16(2014)073023;
doi.org/10.1088/1367-2630/16/1/013015;
131. Hachisu H, Fujieda M,
Nagano S, Gotoh T, Nogami A, Ido T, Falke St, Huntemann N,
Grebing C, Lipphardt B, Lisdat Ch, Piester
D,
Opt Lett, 39(2014)4072-4075.
132. Akamatsu D, Inaba H,
Hosaka K, Yasuda M, Onae T, Suzuyama T, Amemiya M, Hong F, Appl
Phys Express, 7 (2014)012401;
doi.org/10.7567/APEX.7.012401.
133. Katori H in OSA Technical
Digest (online) of Conference on Lasers and Electro-Optics, (CLEO
2015), San Jose, 2015, Optical Society of America,
paper SF1L.1.
134. Lemke N D, Ludlow A D,
Barber Z W, Fortier T M, Diddams S A, Jiang Y, Jefferts S R,
Heavner T P, Parker T E, Oates C W,
Phys Rev Lett, 103(2009)063001;
doi:org/10.1103/PhysRevLett.103.063001
135. Akamatsu D, Yasuda M,
Inaba H, Hosaka K, Tanabe T, Onae A, Hong F, Opt Express,
22(2014)7898-7905.
136. Park C Y, Yu Dai-Hyuk,
Lee Won-Kyu, Park Sang Eon, Kim Eok Bong, Lee Sun Kyung, Cho Jun
Woo, Yoon Tai Hyun, Mun Jongchul,
Park Sung Jong, Kwon Taeg Yong, Lee Sang-Bum, Metrologia,
50(2013)119; doi: org/10.1088/0026-1394/50/2/119
137. Yu D H, Lee S, Lee W K,
Park C Y, Park S E, Heo M S, Mun J, Lee S B, Kwon T Y, in
Proceedings of Conference on Precision
Electromagnetic Measurements (CPEM 2014), Rio de Janeiro, 2014, p.
668.
138. McFerran J J, Yi L, Mejri
S, Di Manno S, Zhang W, Guena J, Le Coq Y, Bize S, Phys Rev Lett,
108(2012)
183004;doi:
org/10.1103/PhysRevLett.108.183004
139. Barwood G P, Huang G,
Klein H A, Johnson L A M, King S A, Margolis S, Szymaniec K,
Gill P , Phys Rev A, 89(2014)050501(R);
doi: doi.org/10.1103/PhysRevA.89.050501
140. Wang Y H, Liu T, Dumke R,
Stejskal A, Zhao Y N, Zhang J, Lu Z H, Wang L J, Becker Th, Walther
H, Laser Phys, 17(2007)1017-1024.
141. Godun R, Nisbet-Jones P,
Jones J, King S, Johnson L, Margolis H, Szymaniec K, Lea S, Bongs
K, Gill P, Phys Rev Lett, 113(2014)210801;
doi: org/10.1103/PhysRevLett.113.210801
142. Tommaseo G, Pfeil
T, Revalde G, Werth G, Indelicato P, Desclaux J P, Eur Phys
Journal: D, 25(2003)113-121.
143. Roos C F, Chwalla M, Kim
K, Riebe M, Blatt R, Nature, 443(2006)316-319.
144. Barwood G P, Gill P,
Huang G, Klein H A, in Conference on Precision Electromagnetic
Measurements (CPEM 2012), Washington DC, 2012, p. 270.
145. Jiang D, Arora B,
Safronova M S, Clark C W, J Phys B, 42(2009)154020; doi:
org/10.1088/0953-4075/42/15/154020.
146. Barwood G P, Margolis H
S, Huang G, Gill P, Klein H, Phys Rev Lett, 93(2004)133001;
doi:org/10.1103/PhysRevLett.93.133001
147. Meggers W F, Res J Natl
Bur Stand, 71A(1967)396-544.
148. Rosenband T, Schmidt P O,
Hume D B, Itano W M, Fortier T M, Stalnaker J E, Kim K, Diddams S
A,Koelemeij J C J, Bergquist J C, Wineland D J,
Phys Rev
Lett, 98(2007)220801;
doi:org/10.1103/PhysRevLett.98.220801
149. Safronova M S, M. G.
Kozlov, C.W. Clark, Phys Rev Lett, 107(2011)143006;
/doi.org/10.1103/PhysRevLett.107.143006
150. Dube P, Madej A A, Tibbo M, Bernard J E,
Phys Rev Lett, 112(2014)173002; doi:
org/10.1103/PhysRevLett.112.173002
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol 25, No 9, 2016,1093-1101
Permanent EDM measurement in Cs using nonlinear magneto-optic rotation
Harish Ravi, Mangesh Bhattarai, Abhilash Y D, Ummal Momeen* and Vasant Natarajan
Department of Physics, Indian Institute of Science, Bangalore-560 012, India
*School of Advanced Sciences, VIT University, Vellore 632 014, India
___________________________________________________________________________________________________________________________________
We use the technique of chopped nonlinear magneto-optic rotation (NMOR) at room temperature in 133Cs vapor cell to measure the permanent electric dipole moment (EDM) in the atom. The cell has paraffin coating on the walls to increase the relaxation time. The signature of the EDM is a shift in the Larmor precession frequency which is correlated with the application of an E field. We analyze errors in the technique, and show that the main source of systematic error is the appearance of a longitudinal B field when the E field is applied. This error can be eliminated by doing measurements on the two ground hyperfine levels. Using an E field of 2.6 kV/cm, we place an upper limit on the electron EDM of 2.9´10–22 e-cm (95% condence). This limit can be increased by 7 orders-of-magnitude|and brought below the current best experimental value|with easily implementable improvements to the technique. © Anita Publications. All rights reserved.
Keywords: NMOR; EDM; Paraffin coating.
Total Refs: 14
______________________________________________________________________________________________________
Asian Journal of Physics Vol 25, No 9, 2016,1103-1117
Precise many-electron calculations of isotope shift for alkali like atoms or ions
Sourav Roy1, Anal Bhowmik2 and Sonjoy Majumder2
1 Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
2 Department of Physics, Indian Institute of Technology-Kharagpur, Kharagpur-721 302, India
___________________________________________________________________________________________________________________________________
In this paper, we review the precise many-body calculations isotope shift for alkali and singly ionized alkaline earth atoms. Relativistic coupled cluster method is employed here to have correlation exhaustive results. We showed that the preciseness of the results not only depends on the proper consideration of excitation cluster amplitudes, but also important on exact description of Dirac-Hartree-Fock orbitals wavefunctions over the radial extent. Our results for the mass constants are also compared with the values extracted from the experimental measurements. Distinct and interesting relativistic correction of IS, magic nucleon number and even-odd staggering phenomena of nucleus are studied in terms of different isotopes. © Anita Publications. All rights reserved
Total Refs: 62
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol 25, No 9, 2016,1119-1141
Energy level crossing of highly charged ions for optical clocks
Yan-mei Yu1 and Bing-bing Suo2
1Beijing National Laboratory for Condensed Matter Physics,
Institute of Physics, Chinese Academy of Sciences, Beijing 100190,China and
2Institute of Modern Physics, Northwest University, Xi’an, Shaanxi 710069, China
___________________________________________________________________________________________________________________________________
New clock scheme based on the highly charged ions (HCIs) has been proposed for the accuracy at 10–19 recently. The key advantage of HCIs comes from their high ionic charge. The E1 transitions in HCIs are in x-ray range usually. However, near the level crossings, configuration crossing keeps frequencies of transitions in the optical range and also provides wealthy chances for looking for the relatively strong transition line for cooling. Preliminary knowledge of energy level crossings in HCIs is very useful to select suitable ions for better atomic clocks.. In this paper, a large quantity of energy level data of the HCIs are summarized in order to illustrate 3d − 4s, 4d−5s, 5d−6s, 4f −5d, 4f − 6s, 4f − 5p, and 4f − 5s crossings in isoelectronic sequences with the increasing number of electrons. The tendency of the energy level crossings that occur at the first six rows of the periodic table is reviewed. Some new HCIs near the energy level crossings are suggested that have transitions within the wavelength range accessible to modern lasers and have enriched sensitivity to potential time variation of fine structure constant. © Anita Publications. All rights reserved
Keywords: Energy level crossing; Highly charged ions; Optical
clocks, E1 transition
PACS numbers: 31.15.ap, 31.15.aj, 32.10.Dk
Total Refs:21
1. Chou C W, D B Hume, Koelemeij J C
J, Wineland D J, and Rosenband T, Phys. Rev. Lett. 104(2010)
070802.
2. Hinkley N, Sherman J A, Phillips N
B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Lud-low
A D, Science 341(2013) 1215.
3. Bloom B J, Nicholson T L, Williams
J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J,
Nature (London) 506(2014) 71.
4. Ushijima I, Takamoto M, Das M,
Ohkubo T, and Katori H, Nature Photonics 9(2015) 185.
5. Campbell C J, Radnaev A G, Kuzmich
A, Dzuba V A, Flambaum V V, and Derevianko A, Phys. Rev. Lett.
108(2012) 120802.
6. Derevianko A, Dzuba V A, Flambaum
V V, Phys. Rev. Lett. 109(2012) 180801.
7. Yudin V I, Taichenachev A V, and
Derevianko A, Phys. Rev. Lett. 113(2014) 233003.
8. Berengut J C, Dzuba V A, Flambaum
V V, and Ong A, Phys. Rev. A 86(2012) 022517.
9. Berengut J C, Dzuba V A, and
Flambaum V V, Phys. Rev. Lett. 105(2010) 120801.
10. Berengut J C, Dzuba V A, Flambaum V V, and
Ong A, Phys. Rev. Lett. 106(2011) 210802.
11. Berengut J C, Dzuba V A, and Flambaum V V,
Phys. Rev. A 84(2011) 054501.
12. Berengut J C, Dzuba V A, Flambaum V V, and
Ong A, Phys. Rev. Lett. 109(2012) 070802.
13. Berengut J C, Dzuba V A, and Flambaum V V,
Phys. Rev. A 86(2012) 054501.
14. Dzuba V A, Flambaum V V, and Katori H, Phys.
Rev. A 91(2015) 022119.
15. Dzuba V A , Derevianko A, and Flambaum V V,
Phys. Rev. A 86(2012) 054501.
16. Safronova M S, Dzuba V A, Flambaum V V,
Safronova U I, Porsev S G, and Kozlov M G, Phys. Rev. Lett.
113(2014) 030801.
17. Safronova M S, Dzuba V A, Flambaum V V,
Safronova U I, Porsev S G, and Kozlov M G, Phys. Rev. A 90(2014)
042513.
18. Safronova M S, Dzuba V A, Flambaum V V,
Safronova U I, Porsev S G, and Kozlov M G, Phys. Rev. A 90(2014)
052509.
19. Windberger A, Crespo L´opez-Urrutia J R,
Bekker H, Oreshkina N S, Berengut J C, Bock V, Borschevsky A, Dzuba
V A, Eliav E, Harman Z, Kaldor U, Kaul S, Safronova U I, Flambaum V
V, Keitel C H, Schmidt P O, Ullrich J, and Versolato O O, Phys.
Rev. Lett. 114(2015) 150801.
20. DIRAC, a relativistic ab initio electronic
structure pro-gram, Release DIRAC14 (2014), written by Visscher L,
Jensen H J Aa, Bast R, Saue T, with contributions from Bakken V,
Dyall K G, Dubillard S, Ekstr¨om U, Eliav E, Enevoldsen T, Faßhauer
E, Fleig T, Fossgaard O, Gomes A S P, Helgaker T, Lærdahl J K, Lee
Y S, Henriksson J, Iliaˇs M, Jacob Ch R, Knecht S, Ko-morovsk´y S,
Kullie O, Larsen C V, H. Nataraj S, Nor-man P, Olejniczak G, Olsen
J, Park Y C, Pedersen J K, Pernpointner M, Ruud K, Salek P,
Schimmelpfennig B, Sikkema J, Thorvaldsen A J, Thyssen J, Van
Stralen J, Villaume S, Visser O, Winther T, and Yamamoto S (see
http://www.diracprogram.org).
21. Dyall K G, J. Phys. Chem. A 113(2009) 12638;
Theor. Chem. Acc. 117(2007) 483; Theor. Chem. Acc. 112(2004) 403;
Theor. Chem. Acc. 125(2009) 97; Theor. Chem. Acc. 129(2011) 603;
Gomes A S P, Dyall K G and Visscher L, Theor. Chem. Acc. 127(2010)
369. Available from the Dirac web site,
http://dirac.chem.sdu.dk.
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol 25, No 9, 2016,1143-1159
The magnetic moment of the bound electron
G Werth1 and S Sturm2
1Johannes Gutenberg University, Institutfuer Physik, 55099 Mainz, Germany
2Max-Planck Institute for Nuclear Physics,
Saupfercheckweg, 169117 Heidelberg, Germany
___________________________________________________________________________________________________________________________________
The magnetic moments of electrons, generally expressed by the dimensionless g-factorg = ΔE/μB BΔm as scaling factor for the energy difference ΔE between Zeeman levels of quantum number m in a magnetic field B is an important quantity for our understanding of atomic structure. Penning traps are the instruments of choice to measure values of g for charged particles. We review results of measurements performed in recent years onmulti-electron ions which serve as test of atomic structure calculations. Very precise results have been obtained on hydrogen- andlithium-like ions which represent to date the most stringent test of Quantum Electrodynamic calculations in bound systems. From a combination of experimental and theoretical results we derived a new value for the electron's atomic mass, improving the number listed in the tables of fundamental constants by more than one order of magnitude.© Anita Publications. All rights reserved.
Keywords: Magnetic moment, Spin, Zeeman levels
Total Refs: 33
1. Kusch P and
Foley H M, Phys Rev, 72 (1947) 1256.
2. Brown L S,
Gabrielse G, Phys Rev A, 25(1982)2423;
doi.org/10.1103/PhysRevA.25.2423
3. Werth G,
Gheorghe V, Major F G,Charged particle traps II, Springer,
Heidelberg (2009)
4. Flambaum V et
al.,Zh. Eksp.Teor.Fiz. (Sov. Phys. JETP) 75 (1978) 75
5. Marx G et al.,
Eur Phys J D, 4 (1998) 1279
6. Dicke R H, Phys
Rev, 89(1953)472; http://dx.doi.org/10.1103/PhysRev.89.472
7. Lichtenberg C
et al. Eur. Phys. J. D, 2(1998)29;
8. Lindroth E,
Ynnerman A, Phys Rev A, 47(1993)961;
doi.org/10.1103/PhysRevA.47.961
9. Kallay M,
Nataraj H S, Sahoo B K, Das B P, Visscher L, Phys Rev A,
83(2011)030503; doi.org/10.1103/ PhysRevA.83.030503
10. Indelicato P, A.-M
MÅrtensson-Pendrill A.-M, Quint W, Desclaux J.-P, Hyperfine
Interactions, 146/147(2003)127-131.
11. Kinoshita T, Int. J. of
Mod. Phys. A 29(2014) 1430003
12. Hanneke D et al., Phys Rev
Lett, 100(2008)111807-
13. Breit G, Nature, 133
(1928)649
14. Karshenboim S G in: The
Hydrogen Atom (S.G. Karshenboimed.). ( Springer, Berlin) 2001, p.
651
15. Yerokhin V A, and
Jentschura U D, Phys Rev A, 81 (2010) 012502
16. Yerokhin V A, Harman Z, PR
A88(2013)042502
17. Eides M I, Martin T J,
Phys Rev Lett, 105(2010)100402
18. GlazovD A, Shabaev V M,
Phys. Lett. A 297(2002) 408
19. Shabaev V M et al.,
arXiv:1508.00392vI
20. Glazov D A et al. Springer
Tracts Mod.Phys, 256(2014) 137
21. Sturm S, Blaum K, Werth G,
Ann Phys, 525(2013)620.
22. Diederich M et al.,
Hyperfine Interactions, 115(1998)185.
23. Sturm S et al., Phys Rev
Lett, 107(2011)143003; doi.org/10.1103/PhysRevLett.107.143003
24. Sturm S et al., Phys Rev
A, 87(2013) 030501
25. HäffnerH et al., Phys Rev
Lett, 85 (2000) 5308
26. Verdu J, Djekić S, Stahl
S, Valenzuela T, Vogel M, Werth, Beier T, Kluge H.-J, Quint W, Phys
Rev Lett, 92 (2004) 093002;
doi.org/10.1103/PhysRevLett.92.093002
27. Sturm S, Wagner A,
Kretzschmar M, Quint W, Werth G, Blaum K. , Phys Rev A,
87(2013)030501;doi. org/10.1103/PhysRevA.87.030501
28. Shabaev V M, Glazov D A,
Shabaeva M B, Yerokhin V A, Plunien G, Soff G, Phys Rev A, 65(2002)
062104;
http://dx.doi.org/10.1103/PhysRevA.65.062104.
29. Glazov D A, Shabaev V M,
Tupitsyn I I, Volotka A V, Yerokhin V A, Plunien G, Soff G, Phys
Rev A, 70(2004)062104;
doi.org/10.1103/PhysRevA.70.062104
30. Wagner A et al., Phys Rev
Lett, 110(2013) 033003
31. Köhler F et al., Nature
Comm, 7 (2016)10246
32. Sturm S, Köhler F,
Zatorski J, Wagner A, Harman Z, Werth G, Quint W, C H Keitel, Blaum
K, Nature, 506 (2014) 467-470.
33. Köhler F, S Sturm S,
Kracke A, Werth G, Quint W, Blaum K., J Phys B: At Mol Opt Phys,
48(2015)144032;
doi.org/10.1088/0953-4075/48/14/144032
florian.koehler@mpi-hd.mpg.de
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol 25, No 9, 2016,1161-1206
Computational methods for high-precision spectroscopy of three-electron atomic systems
Liming Wang1, Chun Li2, and Zong-Chao Yan3
1Department of Physics, Henan Normal University, Xinxiang, Henan, P. R. China 453007
2Department of Mathematics, Nanjing University, Nanjing, Jiangsu, P. R. China 210093
3 Department of Physics, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
4Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences, Wuhan, Hubei, P. R. China 430071
___________________________________________________________________________________________________________________________________
Recent progress on computational methods for high precision calculations of three-electron atomic systems are reviewed. We first introduce two important methods for solving the time independent Schrödinger equation, the Rayleigh-Ritz variational method and Rayleigh-Schrödinger perturbation method. We then show how to construct a nonrelativistic wave function variationally in Hylleraas coordinates and how to solve the eigenvalue problems of the Hamiltonian for a three-electron atomic system. We then focus on computational aspects of relativistic and quantum electrodynamic corrections to atomic energy levels. Some theoretical results for nonrelativistic energy eigenvalues, ionization energies, fine structure splittings, and isotope shifts are reviewed. Finally, we include two special sections that describe, respectively, basic mathematical properties of Schrödinger operators and mathematical theory of the Fromm-Hill integral. © Anita Publications. All rights reserved.
Keywords: Schrödinger equation; Rayleigh-Ritz variational method; Rayleigh-Schrödinger perturbation method; Hamiltonian
Total Refs:165
1. Lamb W E and
Retherford R C, Phys Rev, 72(1947)241.
2. Grant I P, in
Handbook of Atomic, Molecular, and Optical Physics, edited by Drake
G W (Springer Science+Business Media, Inc.) 2006, p325.
3. Salpeter E and
Bethe H A, Phys Rev, 84(1951)1232;doi
4. King F W, J
Mole Struct (Theochem), 400(1997)7-56.
5. (a) Hylleraas E
A, Z. Phys. 48(1928)469;
(b) Hylleraas E A, Z. Phys. 54 (1929) 347.
6. Drake G W F,
Cassar M M, and Nistor R A, Phys Rev A, 65 (2002) 054501.
7. Korobov V I,
Phys Rev A, 66 (2002) 024501.
8. Schwartz C,
Int. J. Mod. Phys. E 15 (2006) 877; arXiv: math-ph/0605018.
9. Puchalski M,
Kedziera D, Pachucki K, Phys Rev A, 82(2010)062509;
doi.org/10.1103/PhysRevA.82.062509;
Krzysztof.Pachucki@fuw.edu.pl
10. Wang L M, Yan Z-C, Qiao H
X, Drake G W F, Phys Rev A,
85(2012)052513;doi.org/10.1103/PhysRevA.85.052513
gdrake@uwindsor.ca
11. James H M, Coolidge A S,
Phys Rev, 49 (1936) 688; doi.org/10.1103/PhysRev.49.688
12. Perkins J F, J Chem Phys,
48 (1968) 1985.
13. King F W, Phys Rev A, 40
(1989) 1735.
14. King F W, Phys Rev A, 43
(1991) 3285; 58 (1998) 3597.
15. Drake G W F, Yan Z-C, Phys
Rev A, 52 (1995) 3681.
16. Yan Z-C, Drake G W F, Phys
Rev A, 52 (1995) 3711.
17. Yan Z-C and Drake G W F,
J. Phys. B 30 (1997) 4723; 33 (2000) 2437.
18. Pachucki K, Puchalski M,
Remiddi E, Phys Rev A, 70(2004)032502;
doi.org/10.1103/PhysRevA.70.032502 krp@fuw.edu.pl
mpuchals@fuw.edu.pl; remiddi@bo.infn.it
19. Puchalski M, Pachucki K,
Phys Rev A, 73(2006)022503; doi.org/10.1103/PhysRevA.73.022503
mpuchals@fuw.edu.pl : krp@fuw.edu.pl
20. Sims J S, Hagstrom S A,
Phys Rev A, 80(2009)052507; doi.org/10.1103/PhysRevA.80.052507
Stanley A. Hagstrom hagstrom@indiana.edu
21. Stanke M, Komasa J,
Kedziera D, Bubin S, Adamowicz L, Phys Rev A, 78(2008)052507;
doi.org/10.1103/PhysRevA.78.052507 :
monika@fizyka.umk.pl ludwik@email.arizona.edu
22. Bushaw B A,
Nortershauser W, Drake G W F, and Kluge H-J, Phys Rev A, 75
(2007)052503.
23. Stanke M, Komasa J,
Kedziera D, Bubin S, and Adamowicz L, Phys Rev A, 77
(2008)062509.
24. Sharkey K L, Bubin S, and
Adamowicz L, Phys Rev A, 83 (2011) 012506.
25. Bubin S, and Adamowicz L,
J Chem Phys, 136(2012)134305.
26. Sims J S and Hagstrom S A,
Phys Rev A, 83 (2011) 032518.
27. Stanke M, Komasa J, Bubin
S, Adamowicz L, Phys Rev A, 80 (2009) 022514.
28. Puchalski M, Komasa J,
Pachucki K, Phys Rev A, 92 (2015) 062501.
29. Puchalski M and Pachucki
K, Phys. Rev. Lett. 113 (2014) 073004.
30. Puchalski M, Pachucki K,
Phys Rev A, 92 (2015) 012513.
31. Puchalski M, Pachucki K,
Phys Rev A, 80 (2009) 032521.
32. Puchalski M, Pachucki K,
Phys Rev A, 81(2010)052505.
33. Breit G, Phys. Rev. 34
(1929) 553; 39(1932)616.
34. Stone A P, Proc. Phys.
Soc. (London) 77 (1961) 786; 81 (1963) 868.
35. Douglas M, Kroll N M,
Annals of Physics 82 (1974) 89.
36. Araki H, Prog. Theor
Phys,17 (1957) 619.
37. Sucher J, Phys. Rev. 109
(1958) 1010.
38. Zhang T, Drake G W F, Phys
Rev A, 54 (1996) 4882.
39. Caswell W E, Lepage G P,
Phys Lett B, 167 (1986) 437.
40. Pachucki K, Phys Rev A, 56
(1997) 297.
41. (a) Pachucki K, J Phys B,
31(1998)5123;
(b) Pachucki K, J Phys B, 32(1999)137.
42. Pachucki K, Phys Rev A,
71(2005)012503.
43. Pachucki K, Phys. Rev.
Lett. 97 (2006) 013002.
44. Pelzl P J, Smethells G J,
and King F W, Phys. Rev. E, 65 (2002) 036707.
45. Yan Z-C and Drake G W F,
Can. J. Phys, 72 (1994) 822.
46. Pachucki K, Puchalski M,
Phys Rev A, 71 (2005) 032514.
47. King F W, Adv. At. Mol.
Opt. Phys, 40 (1999) 57.
48. Fromm D M, Hill R N, Phys
Rev A, 36(1987) 1013.
49. Drake G W F, in
Encyclopedia of Applied Physics, Vol. 23 (WILEY-VCH Verlag GmbH)
1998, p121.
50. Hylleraas E A, Undheim B,
Z. Phys. 65 (1930) 759.
51. MacDonald J K L, Phys.
Rev. 43 (1933) 830.
52. Dalgarno A and Stewart A
L, Proc. R. Soc. A 238 (1956) 269.
53. Drake G W F, Nucl.
Instrum. Methods Phys. Res. B 31 (1988) 7.
54. McKenzie D K and Drake G W
F, Phys Rev, 44 (1991) R6973; 48 (1993) 4803(E).
55. Mitroy J et al., Rev. Mod.
Phys. 85 (2013) 693.
56. Kato T, Commun. Pure Appl.
Math. 10 (1957) 151.
57. Drake G W F,
Nortershauser W, and Yan Z-C, Can. J. Phys. 83 (2005) 311.
58. Pelzl P J, King F W, Phys
Rev, 57(1998)7268.
59. Ohrn Y and Nordling J, J.
Chem. Phys. 39 (1963) 1864.
60. Li C, Wang L M, and Yan
Z-C, Int. J. Quantum Chem. 113 (2013) 1307.
61. Li C, Wang L M, and Yan
Z-C, Phys Rev A, 88 (2013) 052513.
62. Harris F E, Adv. Quantum
Chem. 50 (2005) 61.
63. Quinn M J, Parallel
Programming in C with MPI and OpenMP. (McGraw-Hill) 2003.
64. Sims J S and Hagstrom S A,
J Chem Phys, 124 (2006) 094101.
65. Bubin S et al., Chem. Rev.
113 (2013) 36.
66. Wang L M, Yan Z-C, Qiao H
X, Drake G W F, Phys Rev A, 83 (2011) 034503.
67. Wang L M, Yan Z-C, Qiao H
X, Drake G W F, unpublished.
68. Wang L M, Li C, Yan Z-C,
and Drake G W F, Phys. Rev. Lett. 113 (2014) 263007.
69. Wang L M, Li C, Yan Z-C,
and Drake G W F, unpublished.
70. Golub G H and Van Loan C
F, Matrix Computations. (The Johns Hopkins University Press,
Baltimore, Fourth edition) 2013.
71. Faddeeva V N,
Computational Methods of Linear Algebra. (Dover, New York) 1959,
p81.
72. Chi X B, Math. Num. Sin.
15 (1993) 289 (in Chinese).
73. Dalgarno A, Lewis J T,
Proc. R. Soc. London A 233 (1955) 70.
74. Puchalski M. Pachucki K,
Phys Rev A, 78 (2008) 052511.
75. Puchalski M, Kedziera D,
Pachucki K, Phys Rev A, 87 (2013) 032503.
76. Bylicki M and Pestka G, J.
Phys. B 29 (1996) L353.
77. Kristensen P et al., Phys
Rev A, 55 (1997) 978; Erratum Phys Rev A, 56 (1997) 1674.
78. (a) Hiller J, Sucher J and
Feinberg G, Phys Rev A, 18 (1978) 2399. Errata Phys Rev A, 22
(1980) 2293;
(b) Phys Rev A, 20 (1979) 378.
79. Drachman R J, J. Phys. B
14 (1981) 2733.
80. Pachucki K, Cencek W,
Komasa J, J Chem Phys, 122(2005)184101.
81. Yan Z-C and Drake G W F,
Phys Rev A, 61(2000)022504;
82. Nortershauser W et al.,
Phys Rev A, 83 (2011) 012516.
83. Kabir P K and Salpeter E
E, Phys Rev, 108(1957)1256.
84. Pachucki K, J. Phys. B 31
(1998) 5123.
85. Yan Z-C, Drake G W F,
Phys. Rev. Lett. 91 (2003) 113004.
86. Drake G W F, Goldman S P,
Can. J. Phys. 77 (1999) 835.
87. Pachucki K, Komasa J, Phys
Rev A, 68 (2003) 042507.
88. Schwartz C, Phys. Rev. 123
(1961) 1700.
89. Yan Z-C, Nortershauser
W, and Drake G W F, Phys. Rev. Lett. 100 (2008) 243002. Erratum
Phys. Rev. Lett. 102 (2009) 249903.
90. Yan Z-C. Drake G W F, Phys
Rev A, 66 (2002) 042504.
91. Sansonetti C J, Richou B,
Engleman R (Jr), Radziemski L J, Phys Rev A, 52(1995)2682.
92. Sansonetti C J et al.,
Phys. Rev. Lett. 107 (2011) 023001. Erratum Phys. Rev. Lett. 109
(2012) 259901.
93. Brown R C et al., Phys Rev
A, 87 (2013) 032504; Erratum Phys Rev A, 88 (2013) 069902.
94. Bushaw B A,
Nortershauser W, Ewald G, Dax A, and Drake G W F, Phys. Rev.
Lett. 91 (2003) 043004.
95. NIST Atomic Spectra
Database: http://physics.nist.gov/asd3.
96. Nakamura T et al., Phys
Rev A, 74 (2006) 052503.
97. Yan Z-C, Drake G W F,
Phys. Rev. Lett, 79 (1997) 1646.
98. Puchalski M, Pachucki K,
Phys Rev A, 79 (2009) 032510.
99. Brog K C, Eck T G, and
Wieder H, Phys Rev, 153(1967)91.
100. Orth H, Ackermann H, Otten E W, Z.
Phys. A 273 (1975) 221.
101. Noble G A, Schultz B E, Ming H, and
van Wijngaarden W A, Phys Rev A, 74 (2006) 012502.
102. Walls J, Ashby R, Clarke J J, Lu B,
and van Wijngaardena W A, Eur. Phys. J. D 22 (2003)159.
103. Das D and Natarajan V, Phys Rev A, 75
(2007) 052508; doi.
104. Morgan III J D, Cohen J S, in
Handbook of Atomic, Molecular, and Optical Physics, edited by Drake
G W F (Springer Science+Business Media, Inc.)
2006, p1355.
105. Drake G W F, in Long-Range Casimir
Forces: Theory and Recent Experiments on Atomic Systems, edited by
Levin F S, Micha D A. (Plenum, New York) 1993, p107.
106. Marin F, Minardi F, Pavone F,
Inguscio M, Drake G W F, Z Phys D, 32(1995)285; doi.
107. Shiner D, Dixson R and Vedantham V,
Phys. Rev. Lett, 74 (1995)3553; doi.
108. Wang L-B et al., Phys Rev Lett, 93
(2004) 142501.
109. Morton D C, Wu Q, Drake G W F, Phys
Rev A, 73(2006)034502.
110. Mueller P et al., Phys Rev Lett, 99
(2007) 252501.
111. van Rooij R et al., Nature 333 (2011)
196.
112. Pastor P C, Consolino L, Giusfredi G,
Natale P D, Inguscio M, Yerokhin V A, Pachucki K, Phys Rev Lett,
108(2012)143001;
doi.org/10.1103/PhysRevLett.108.143001 pablo.canciopastor@ino.it,
Krzysztof.Pachucki@fuw.edu.pl
113. Lu Z T et al., Rev. Mod. Phys. 85
(2013) 1383.
114. Puchalski M, Moro A M, Pachucki K,
Phys. Rev. Lett. 97 (2006) 133001.
115. Ewald G et al., Phys. Rev. Lett. 93
(2004) 113002. Erratum Phys. Rev. Lett. 94 (2005 039901.
116. Sanchez R et al., Phys. Rev. Lett. 96
(2006) 033002.
117. Nortershauser W, et al., Phys. Rev.
Lett. 102 (2009) 062503.
118. Nortershauser W, Ne T, Sanchez R,
and Sick I, Phys. Rev. C 84 (2011) 024307.
119. Krieger A et al., Phys Rev Lett, 108
(2012) 142501.
120. Kato T, Perturbation Theory for
Linear Operators. (Springer-Verlag, Berlin) 1980.
121. Simon B, J. Math. Phys. 41 (2000)
3523.
122. Reed M and Simon B, Methods of modern
mathematical physics, IV: Analysis of operators. (Academic Press,
New York) 1978.
123. Reed M and Simon B, Methods of modern
mathematical physics, I: Functional analysis. (Academic Press, New
York, Revised edition) 1980.
124. Kato T, Trans. Amer. Math. Soc. 70
(1951) 212.
125. Zhislin G M, Tr. Mosk. Mat. Obs. 9
(1960) 81.
126. Zhislin G M, Teor. Mat. Fiz. 7 (1971)
571.
127. Sigal I M, Commun. Math. Phys. 85
(1982) 309.
128. Reed M and Simon B, Methods of modern
mathematical physics, II: Fourier Analysis, Self- Adjointness.
(Academic Press, New York) 1975.
129. Maz'ya V and Shubin M, Ann. of Math.
162 (2005) 919.
130. Hill R N, Phys. Rev. Lett. 38 (1977)
643.
131. Brown G E and Ravenhall D G, Proc.
Roy. Soc. (London) A 208 (1951) 552.
132. Zhislin G M, SIGMA 2 (2006)
024.
133. Morozov S, and Vugalter S, Ann. Henri
Poincare 7 (2006) 661.
134. Matte O, Rev. Math. Phys. 22 (2010)
1.
135. Hardekopf G, Sucher J, Phys Rev A, 31
(1985) 2020.
136. Evans W D, Perry P, Siedentop H,
Commun Math Phys, 178 (1996) 733.
137. Sucher J, Phys. Rev. A 22 (1980) 348.
Phys Rev A, 23 (1981) 388.
138. Fierz M and Pauli W, Proc. Roy. Soc.
(London) A 173 (1939) 211.
139. Bruneau L and Derezinski J, Rep.
Math. Phys. 54 (2004) 169; doi.
140. Bach V, Fröhlich J, Sigal I M, Adv.
in Math,137(1998)299; doi.
141. Bach V, Fröhlich J, Sigal I M, Commun
Math Phys, 207 (1999)249-290.
142. Lieb E H, Loss M, Adv Theor Math
Phys, 7(2003)667-710.
143. Klahn B, Bingel W A, Theoret Chim
Acta (Berl), 44(1977)9-26.
144. Klahn B, Bingel W A, Theoret Chim
Acta (Berl), 44 (1977)27-43.
145. Coolidge A S, James H M, Phys Rev,
51(1937)855; doi.org/10.1103/PhysRev.51.85
146. Klahn B and Morgan III J D, J Chem
Phys, 81 (1984) 410; doi.
147. Hill R N, J Chem Phys, 83 (1985)
1173; doi.
148. Drake G W F, in Handbook of Atomic,
Molecular, and Optical Physics, edited by Drake G W F (Springer
Science+Business Media, Inc.) (2006), p199.
149. James H M and Coolidge A S, J Chem
Phys, 1 (1933) 825.
150. Drake G W F, Phys Rev A, 18 (1978)
820.
151. Myers C R, Umrigar C J, Sethna J P
and Morgan III J D, Phys Rev A, 44 (1991) 5537.
152. Pack R T, Brown W B, J Chem Phys, 45
(1966) 556.
153. (a) Fock V A, IZV. Akad. Nauk SSSR,
Ser. Fiz. 18 (1954) 1961;
(b) Kgl. Norske
Videnskab. Selskabs Forh. 31(1958)138.
154. White R J, Stillinger F H, Phys Rev
A, 3(1971)1521; doi.org/10.1103/PhysRevA.3.1521
155. Babuska I, Osborn J E, Eigenvalue
problems, In: Ciarlet P G, Lions J L (eds.), Handbook of Numerical
Analysis, vol.II,
(North Holland, Amsterdam).
1991, p641.
156.
Feng K, Qin M, Symplectic geometric algorithms for Hamiltonian
systems, (Zhejiang Publishing United Group, Zhejiang Science and
Technology Publishing House, Hangzhou and Springer-Verlag Berlin,
Heidelberg). 2010.
157. Klahn B, Bingel W A, Int J Quant Chem,
11(1977)943-957.
158. Yan Z-C, Drake G W F, Phys Rev A,
52(1995)R4316; doi.org/10.1103/PhysRevA.52.R4316
159. Yan Z-C, McKenzie D K, Drake G W F, Phys Rev
A, 54 (1996) 1322; doi
160. Drake G W F, Can J Phys, 80(2002)1195;
doi
161. Zotev V S, Rebane T K, Phys Rev A,
65(2002)062501; doi
162. Yan Z-C and Drake G W F, Phys Rev Lett, 81
(1998)774; doi
163. Remiddi E, Phys Rev A, 44(1991)5492;
doi
164. Harris F E, Phys Rev A, 55(1997)1820;
doi
165. Li C, Wang L M, Yan Z-C,
unpublished
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol 25, No 9, 2016,1207-1231
Precision measurements based on 40Ca+ ion optical frequency standards
Hua Guan1, 2, Yao Huang1, 2, Cheng-bin Li1, Li-yan Tang1, and Ke-lin Gao1, 2*
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,
Chinese Academy of Sciences, Wuhan 430071, China [1]
2Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
___________________________________________________________________________________________________________________________________
The development of the optical frequency standard based on trapped and cold 40Ca+ with the 4s 2S1/2–3d 2D5/2 clock transition at 729 nm is reported. A single 40Ca+ ion is trapped and laser cooled in a ring Paul trap, and the storage time for the ion is more than one month. The linewidth of a 729 nm laser is reduced to about 1 Hz by locking to a super cavity for longer than one month uninterruptedly. In order to realize the frequency comparison, two similar 40Ca+ optical frequency standards are established. The overall systematic uncertainties of the clock transition of two 40Ca+ optical frequency standards are evaluated to be better than 6 × 10-17. With an over-one-month measurement, the frequency difference between the two clocks is measured to be 3.2 × 10−17 with a measurement uncertainty of 5.5 × 10−17, considering both the statistic (1.9 × 10−17) and the systematic (5.1 × 10−17) uncertainties. By the frequency comparison in three days uninterruptedly, a fractional stability of 7 × 10−17 in 20 000 s of averaging time is achieved. At the same time, the absolute frequency of the clock transition is measured at 10-15 level by using an optical frequency comb referenced to a Hydrogen maser which is calibrated to the SI second through the global positioning system (GPS). The frequency value is 411042129776401.7(1.1) Hz with the correction of the systematic shifts. Moreover, additional two precision measurements based on single trapped 40Ca+ ion are carried out. One is magic wavelengths for 4s 2S1/2-3d 2D5/2 clock transition, λ|mj|=1/2 = 395.7992(7) nm and λ|mj|=3/2 = 395.7990(7) nm are measured. It’s the first time that two magic wavelengths for the 40Ca+ clock-transition are reported. And the correlation between the magic wavelengths and the polarization direction of the linearly polarized laser is preliminary studied. The other one is the 3d 2D5/2 state lifetime measurement, our result of 1174(10) ms agrees well with the experimental results reported by P. A. Barton et al. [Phys. Rev. A 62, 032503 (2000)], A. Kreuter et al. [Phys. Rev. A 71, 032504 (2005)] and the recent RCC calculation result by B. K. Sahoo [Phys. Rev. A 91, 022511 (2015)].
Total
Refs : 58
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol 25, No 9 (2016) 1233-1245
Precision physics with molecules
Amar C Vutha
Department of Physics, University of Toronto, 60 St. George Street, Toronto ON M5S 1A7, Canada
___________________________________________________________________________________________________________________________________
Molecules have become an important resource for precisely measuring a number of fundamental physics quantities. This review provides an introduction to the properties of molecules that make them suitable for precision measurements, and surveys the state of the art in precision molecular physics experiments.© Anita Publications. All rights reserved.
Keywords: Fundamental physics quantities; Precision measurements
Total Ref: 90
1. Bloch Immanuel. Ultracold quantum gases
in optical lattices, Nat Phys, 1(2005)23-30.
2. Georgescu I M, Ashhab S,
Nori Franco, Quantum simulation, Rev Mod Phys,
86(2014)153-185.
3. Alexander D. Cronin, J¨org
Schmiedmayer, and David E. Pritchard. Optics and interferometry
with atoms and molecules, Rev. Mod.Phys.,
81(3):1051–1129,
jul 2009.
4. H. S. Margolis. Optical
frequency standards and clocks. Contemp. Phys., 51(1):37–58,
2010.
5. Andrew D Ludlow, Martin M
Boyd, Jun Ye, E Peik, and P O Schmidt. Optical atomic clocks. Rev.
Mod. Phys., 87:637–701, 2015.
6. B C Regan, Eugene D
Commins, Christian J Schmidt, and DavidPhys. Rev. Lett.,
88(7):71805, feb 2002.
7. C. S. Wood, S. C. Bennett,
D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E.
Wieman. Measurement of Parity Nonconservation and an Anapole Moment
in Cesium. Science (80-. )., 275(5307):1759–1763, mar 1997.
8. Nicholas R. Hutzler, Hsin-I
Lu, and John M. Doyle. The Buffer Gas Beam: An Intense, Cold, and
Slow Source for Atoms and Molecules, Chem.
Rev.,
112(9):4803–4827, 2012.
9. E S Shuman, J F Barry, and
D Demille. Laser cooling of a diatomic molecule. Nature,
467(2010):820-823, oct
10. Matthew T. Hummon, Mark Yeo, Benjamin
K. Stuhl, Alejandra L. Collopy, Yong Xia, and Jun Ye. 2D
magneto-optical trapping of diatomic
molecules.
Phys. Rev. Lett., 110(2013):143001, .
11. V. Zhelyazkova, A. Cournol, T. E.
Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and
B. E. Sauer. Laser cooling and slowing of
CaF
molecules. Phys. Rev. A, 89(5):053416, may 2014.
12. J. F. Barry, D. J. McCarron, E. B.
Norrgard, M. H. Steinecker, and D. DeMille. Magneto-optical
trapping of a diatomic molecule.
Nature,
512(7514):286–289, aug 2014.
13. D. J. McCarron, E. B. Norrgard, M. H.
Steinecker, and D. DeMille. Improved magneto-optical trapping of a
diatomic molecule. New J. Phys.,
17(3):1–12,
mar 2015.
14. Cheng Chin, Rudolf Grimm, Paul
Julienne, and Eite Tiesinga. Feshbach resonances in ultracold
gases. Rev. Mod. Phys., 82(2010)1225-1286.
15. Jones Kevin M, Tiesinga Eite, Lett
Paul D, Julienne Paul S, Ultracold photoassociation spectroscopy:
Long-range molecules and atomic scattering,
Rev
Mod Phys, 78(2006)483-535.
16. Ospelkaus S, Péer A, Ni K.-K, Zirbel J
J, Neyenhuis B, Kotochigova S, Julienne P S, Ye J, Jin D S,
Efficient state transfer in an ultracold dense
gas
of heteronuclear molecules, Nat Phys, 4(2008)622-626.
17. Tetsu Takekoshi, Lukas Reichs llner,
Andreas Schindewolf, Jeremy M. Hutson, C. Ruth Le Sueur, Olivier
Dulieu, Francesca Ferlaino, Rudolf Grimm, and Hanns Christoph
N??gerl. Ultracold dense samples of dipolar RbCs molecules in the
rovibrational and hyperfine ground state. Phys Rev Lett,
113(2014)205301,
18. Jee Woo Park, Sebastian A. Will,
Martin W. Zwierlein. Ultracold Dipolar Gas of Fermionic
Na<sup>23</sup>K<sup>40</sup> Molecules
in
Their
Absolute Ground State, Phys Rev Lett, 114(20):205302, may
2015.
19. Fudong Wang, Xiaodong He, Xiaoke Li,
Bing Zhu, Jun Chen, Dajun Wang. Formation of ultracold NaRb
Feshbach molecules,
New
J Phys, 17(2015)035003.
20. Hendrick Bethlem, Giel Berden, and
Gerard Meijer. Decelerating Neutral Dipolar Molecules, Phys Rev
Lett, 83(1999)1558-1561.
21. Hendrick Bethlem, Floris Crompvoets,
Rienk Jongma, Sebastiaan van de Meerakker, and Gerard Meijer.
Deceleration and trapping of ammonia using
time-varying
electric fields. Phys. Rev. A, 65(5):1–20, may 2002.
22. Sebastiaan Y.T. van de Meerakker,
Nicolas Vanhaecke, and Gerard Meijer. STARK DECELERATION AND
TRAPPING OF OH RADICALS. Annu.
Rev.
Phys. Chem., 57(1):159–190, 2006.
23. S. K. Tokunaga, J. M. Dyne, E. A.
Hinds, M. R. Tarbutt, Stark deceleration of lithium hydride
molecules, New J Phys, 11(2009)055038;
doi.org/10.1088/1367-2630/11/5/055038
m.tarbutt@imperial.ac.uk
24. Bucicov O, Nowak M, Jung S, Meijer G,
Tiemann E, Lisdat C, Cold SO2 molecules by stark deceleration, Eur
Phys J D, 46(2008)463-469.
25. Martin Zeppenfeld, Barbara G. U.
Englert, Rosa Gl¨ockner, Alexander Prehn, Manuel Mielenz, Christian
Sommer, Laurens D.van Buuren,
Michael
Motsch, Gerhard Rempe, Sisyphus cooling of electrically trapped
polyatomic molecules, Nature, 491(7425):570-573, nov 2012.
26. Alexander Prehn, Martin Ibr¨ugger,
Rosa Gl¨ockner, Gerhard Rempe, Martin Zeppenfeld. Optoelectrical
Cooling of Polar Molecules to
Submillikelvin
Temperatures. Phys Rev Lett, 116(2016)063005.
27. Nicolas Vanhaecke, Urban Meier, Markus
Andrist, Beat H. Meier, and Fr´ed´eric Merkt. Multistage Zeeman
deceleration of hydrogen atoms,
Phys
Rev A, 75(2007)031402R;doi.org/10.1103/PhysRevA.75.031402
28. A.W. Wiederkehr, H. Schmutz, M.
Motsch, and F. Merkt. Velocitytunable slow beams of cold O2 in a
single spin-rovibronic state with full a
ngular-momentum
orientation by multistage Zeeman deceleration.
http://dx.doi.org/10.1080/00268976.2012.681312, 2012.
29. M. A. Chieda and E. E. Eyler.
Prospects for rapid deceleration of small molecules by
optical bichromatic forces. Phys. Rev. A - At. Mol.
Opt.
Phys.,
84(6):063401, dec 2011.
30. A. M. Jayich, A. C. Vutha, M. T.
Hummon, J. V. Porto, W. C. Campbell. Continuous all-optical
deceleration and singlephoton cooling of molecular
beams.
Phys. Rev. A - At. Mol. Opt.Phys., 89(2):023425, feb 2014.
31. Ekaterina Ilinova, Jonathan Weinstein,
and Andrei Derevianko, Stimulated deceleration of diatomic
molecules on multiple rovibrational transitions
with
coherent pulse trains, New J Phys, 17(2015)055003;
32. Rudolf Grimm, MatthiasWeidem??ller,
and Yurii B. Ovchinnikov. Optical Dipole Traps for Neutral Atoms.
Adv. At. Mol. Opt. Phys., 42(C):95–170, 2000.
33. DeMille D, Glenn D R, Petricka J,
Microwave traps for cold polar molecules, Eur Phys J D,
31(2004)375-384.
34. Paul Wolfgang, Electromagnetic traps
for charged and neutral particles, Rev Mod Phys,
62(1990)531-540.
35. Mølhave K, Drewsen M, Formation of
translationally cold MgH+ and MgD+ molecules in an ion trap, Phys
Rev A,62(2000)011401;
36. Koelemeij J C J, Roth B, Wicht A,
Ernsting I, Schiller S,Vibrational Spectroscopy of HD+ with 2-ppb
Accuracy, Phys Rev Lett, 98(2007)173002; doi:
37. Schneider T, Roth B, Duncker H, I.
Ernsting, and Stephan Schiller. All-optical preparation of
molecular ions in the rovibrational ground state,
Nat
Phys, 6(2010)275-278. o k
38. Loh H, Cossel K C, Grau M C, Ni K-K,
Meyer E R, Bohn J L, Ye J, Cornell E A, Precision spectroscopy of
polarized moleculesin an ion trap,
Science,
342(2013)1220-1222.
39. Wan Yong, Gebert Florian, Wübbena
Jannes B, Scharnhorst Nils, Amairi Sana, Leroux Ian D, Hemmerling
Börge, Lörch Niels, Hammerer
Klemens,
Schmidt Piet O, Precision spectroscopy by photon-recoil signal
amplification, Nat Commun, 5, jan 2014.
40. van Veldhoven Jacqueline, Bethlem
Hendrick L, Meijer Gerard, ac Electric Trap for Ground-State
Molecules, Phys Rev Lett, 94(2005)083001; doi:.
41. Bethlem Hendrick L, van Veldhoven
Jacqueline, Schnell Melanie, Meijer Gerard, Trapping polar
molecules in an ac trap, Phys Rev A -
At
Mol Opt Phys, 74(2006)063403; doi:.
42. Schnell Melanie, Peter L??tzow, van
Veldhoven Jacqueline, Bethlem Hendrick L, K??pper Jochen,
Friedrich Bretislav, Schleier-Smith Monika,
Haak
Henrik, Meijer Gerard, A linear AC trap for polar molecules in
their ground state, J Phys Chem A, 111(2007)7411-7419.
43. Tarbutt M R, Hudson J J, Sauer B E,
Hinds E A, Prospects for measuring the electric dipole moment of
the electron using electrically trapped
polar
molecules, Faraday Discuss, 142(0):37-56; discussion 93–111,
2009.
44. Doyle John M, Friedrich Bretislav, Kim
Jinha, Patterson David, Buffer-gas loading of atoms and molecules
into a magnetic trap,
Phys
Rev A, 52(1995)R2515-R2518.
45. Weinstein Jonathan D, DeCarvalho
Robert, Guillet Thierry, Friedrich Bretislav, Doyle John M,
Magnetic trapping of calcium monohydride
molecules
at millikelvin temperatures, Nature, 395(6698)148-150.
46. Lu Hsin I, Kozyryev Ivan, Hemmerling
Boerge, Piskorski Julia, Doyle John M, Magnetic trapping of
molecules via optical loading and magnetic
slowing,
Phys Rev Lett, 112(2014)113006;doi:
47. Campbell Wesley C, Tsikata Edem, Lu
Hsin I, van Buuren Laurens D, Doyle John M, Magnetic trapping and
Zeeman relaxation of NH,
Phys
Rev Lett, 98(2007)213001; doi:
48. Stoll Michael, Bakker Joost M, Steimle
Timothy C, Meijer Gerard, Peters Achim, Cryogenic buffer-gas
loading and magnetic trapping of CrH and
MnH
molecules, Phys Rev A - At Mol Opt Phys, 78(2008)032707; doi:
49. Sawyer Brian C, Lev Benjamin L, Hudson
Eric R, Stuhl Benjamin K, Lara Manuel, Bohn John L, Ye Jun,
Magnetoelectrostatic trapping of ground
state
OH molecules, Phys Rev Lett, 98(2007)253002;doi:
50. DeMille D, Cahn S B, Murphree D,
Rahmlow D A, Kozlov M G, Using Molecules to Measure Nuclear
Spin-Dependent Parity Violation,
Phys
Rev Lett, 100(2008)023003, .
51. Zelevinsky T, Kotochigova S, Ye Jun,
Precision test of mass ratio variations with lattice-confined
ultracold molecules,
Phys
Rev Lett, 100(2008)043201;doi:
52. Chin Cheng, Flambaum V V, Kozlov M G,
Ultracold molecules: New probes on the variation of fundamental
constants, New J Phys, 11(2009)055048;doi:
53. Ho Paul T P, Townes Charles H ,
Interstellar Ammonia, Annu Rev Astron Astrophys,
21(1983)239-270.
54. Flambaum V V, Kozlov M G, Limit on the
cosmological variation of mp/me from the inversion spectrum of
ammonia,
Phys
Rev Lett, 98(2007)240801;doi:.
55. Kozlov M G, Lambda-doublet spectra of
diatomic radicals and their dependence on fundamental constants,
Phys Rev A -
At
Mol Opt Phys, 80(2009)022118;doi:
56. Kozlov M G, Levshakov Sergei A,
Microwave and submillimeter molecular transitions and their
dependence on fundamental constants,
Ann
Phys, 525(2013)452-471.
57. Winnewisser G, Herbst E,
Interstellar molecules, Reports Prog Phys, 56(1993)1209-1273,
.
58. Herbst Eric, The chemistry of
interstellar space, Chem Soc Rev, 30(2001)168-176.
59. Hudson Eric R, Lewandowski H J, Sawyer
Brian C, Ye Jun, Cold molecule spectroscopy for constraining the
evolution of the fine structure constant,
Phys
Rev Lett, 96(2006)143004;;doi:
60. Truppe S, Hendricks R J, Tokunaga S K,
Lewandowski H J, Kozlov M G, Christian Henkel, E a Hinds, and M R
Tarbutt. A search for varying
fundamental
constants using hertz-level frequency measurements of cold CH
molecules, Nat Commun, 4(2013)2600
61. Bagdonaite J, Ubachs W, Murphy M T,
Whitmore J B, Constraint on a Varying Proton-Electron Mass Ratio
1.5 Billion Years after the Big Bang,
Phys
Rev Lett, 114(2015):071301;
http://dx.doi.org/10.1103/PhysRevLett.114.071301
62. Levshakov S A, Kozlov M G, Reimers D,
Methanol as a Tracer of Fundamental Constants, Astrophys J,
738(2011)26; doi
63. Bagdonaite Julija, Jansen P, Henkel C,
Bethlem H L, Menten K M, Ubachs W, A stringent limit on a drifting
proton-339(6115)46-8, 2013.
64. Kanekar N, Ubachs W, Menten K M,
Bagdonaite J, Brunthaler A, Henkel C, Muller S, Bethlem H L, Dapra
M, Constraints on changes in the
proton-electron
mass ratio using methanol lines. Mon. Not. R. Astron. Soc. Lett.,
448(2015)L104-L108.
65. Jansen Paul, Bethlem Hendrick L,
Ubachs Wim, Perspective:Tipping the scales: Search for drifting
constants from molecular spectra,
J
Chem Phys, 140(2014)010901; doi:
66. Commins Eugene D, Electric Dipole
Moments of Leptons, Adv. At. Mol. Opt. Phys, 40(1999)1-55.
67. Commins Eugene D, Jackson J D, DeMille
David P, The electric dipole moment of the electron: An intuitive
explanation for the evasion
of
Schiff’s theorem, Am J Phys, 75(2007)532;doi
68. Hinds Edward A, Sandars P G H.
Experiment to search for P - and T -violating interactions in the
hyperfine structure of thallium fluoride,
Phys
Rev A, 21(1980)480-487
69. Wilkening Dean A, Ramsey Norman F,
Larson Daniel J, Search for P and T violations in the hyperfine
structure of thallium fluoride,
Phys
Rev A, 29(1984)425-4384.
70. Hunter L R, Peck S K, Greenspon A S,
Alam S Saad, De- Mille D, Prospects for laser cooling TlF, Phys Rev
A, 85(2012)012511.
71. Isaev T A, Hoekstra S, Berger R,
Laser-cooled RaF as a promising candidate to measure molecular
parity violation, Phys Rev A 82(2010)052521.
72. Hinds Edward A, Sandars P
G H, Electric dipole hyperfine structure of TIF, Phys Rev A,
21(1980)471-479.
73. Kudashov A D, Petrov A N, Skripnikov L
V, Mosyagin N S, Isaev T A, Berger R, Titov A V. <i>Ab
initio</i>study of radium monofluoride (RaF)
as a
candidate to search for parity and time-and-parityviolation
effects, Phys Rev A, 90(2014)052513.
74. Engel Jonathan, Ramsey-Musolf Michael
J, van Kolck U, Electric dipole moments of nucleons, nuclei, and
atoms: The Standard Model and beyond,
Prog
Part Nucl Phys, 71(2013)21-74,
75. Hudson J J, Kara D M, Smallman I J,
Sauer B E, Tarbutt M R, Hinds E A, Improved measurement of the
shape of the electron, Nature, 473(2011)493-496.
76. Vutha A C, Campbell W C, Gurevich Y V,
Hutzler N R, Parsons M, D Patterson, Petrik E, Spaun B, Doyle J
M, Gabrielse G, De-Mille D,
Search
for the electric dipole moment of the electron with thorium
monoxide, J Phys B At Mol Opt Phys, 43(2010)074007;
77. Lee J , Meyer E R , Paudel R, Bohn J
L, Leanhardt A F, An electron electric dipole moment search in the
X ˆ3Delta 1 ground state of tungsten
carbide
molecules, J Mod Opt, 56(2009)2005-2012,
78. Shafer-Ray Neil E, Possibility of 0- g
-factor paramagnetic molecules for measurement of the electron’s
electric dipole moment,
Phys
Rev A, 73(2006)034102,
79. Prasannaa V S, Vutha A C, Abe M, Das B
P, Mercury Monohalides: Suitability for Electron Electric Dipole
Moment Searches,
Phys
Rev Lett, 114(2015)183001;
80. Kozlov M G, Derevianko Andrei,
Proposal for a Sensitive Search for the Electric Dipole Moment of
the Electron with Matrix-Isolated Radicals,
Phys
Rev Lett, 97(2006)063001;
81. Sasmal Sudip, Pathak Himadri, Nayak
Malaya K, Vaval Nayana, Pal Sourav, Search for parity and time
reversal violating effects in HgH:
Relativistic
coupled-cluster study, J Chem Phys, 144(2016)124307;
doi.org/10.1063/1.4944673
82. Meyer E R, Bohn J L, Electron
electric-dipolemoment searches based on alkali-metal- or
alkaline-earthmetal-bearing molecules,
Phys
Rev A, 80(2009)042508;
doi.org/10.1103/PhysRevA.80.042508
83. Baron J, Campbell W C, D DeMille, J M
Doyle, G Gabrielse, Y V Gurevich, PWHess, NR Hutzler, E Kirilov, I
Kozyryev, B R O’Leary,
Panda
C D, Parsons M F, Petrik E S, Spaun B, Vutha A C, West A D, Order
of magnitude smaller limit on the electric dipole moment of the
electron,
Science,
343(2014)269-272.
84. Flambaum VV V, DeMille D, Kozlov M G
G, Time-Reversal Symmetry Violation in Molecules Induced by Nuclear
Magnetic Quadrupole Moments,
Phys
Rev Lett, 113(2014)103003doi.
85. Cahn S B, Ammon J, Kirilov E, Gurevich
Y V, Murphree D, Paolino R, Rahmlow D A, Kozlov M G, DeMille D,
Zeeman-Tuned Rotational
Level-Crossing
Spectroscopy in a Diatomic Free Radical, Phys Rev Lett,
112(2014)163002;
86. Bouchiat Marie-Anne, Bouchiat Claude,
Parity violation in atoms, Reports Prog Phys,
60(1999)1351-1396.
87. Kellogg J M B, Rabi I I, Ramsey N F,
Zacharias J R. The Magnetic Moments of the Proton and the Deuteron.
The Radiofrequency Spectrum of
H2
in Various Magnetic Fields, Phys Rev, 56(1939)728-743.
88. J. M. B. Kellogg, I. I. Rabi, N. F.
Ramsey, and J. R. Zacharias. An Electrical Quadrupole Moment of the
Deuteron. Phys Rev, 55(1939)318-319.
89. Perry Adam J, Hodges James N, Markus
Charles R, Kocheril G Stephen, McCall Benjamin J, Communication:
High precision sub-Doppler
infrared
spectroscopy of the HeH+ ion, J Chem Phys, 141(2014)101101,
90. Kozyryev Ivan, Baum Louis, Matsuda
Kyle, Hemmerling Boerge, MDoyle John, Radiation Pressure Force from
Optical Cycling on a
Polyatomic Molecule, J Phys B At Mol Opt Phys,
49(2016)1–7,
___________________________________________________________________________________________________________________________________
© ANITA PUBLICATIONS
All rights reserved
Designed & Maintained by
Manoj
Kumar