An International Peer Reviewed Research Journal

Title_Vol_29_Nos_3&4,2020

AJP

SSN : 0971 - 3093

Vol 29, Nos 3 & 4, March-April, 2020


Asian


Journal of Physics

_________________________________________________________________________________________________________________________________

Volume 29                                                             Nos 3 & 4                                                         March-April 2020

_________________________________________________________________________________________________________________________________


A Special Issue Dedicated
to
Prof P K Gupta


Guest Edited By : Anindya Dutta


Anita Publications
FF-43, 1st Floor, Mangal Bazar, Laxmi Nagar, Delhi-110 092, India

Prof P K Gupta

Prof P K Gupta is an eminent scientist in the field of laser physics, with special emphasis on biomedical application of lasers. Having obtained M Sc in Physics from Lucknow University, Prof. Gupta joined BARC training school in 1973. He obtained Ph D from Heriot Watt University, Edinburgh, UK, in 1981, with support from a Commonwealth Scholarship. While in BARC, he worked extensively on generation of coherent -infrared radiation using non-linear optical mixing and optically pumped molecular gas lasers and received the N S Satyamurthy memorial award of Indian Physics Association for this work. The watershed moment in his career came when he decided to relocate to the newly formed Center for Advanced Technology in Indore, India and took up the challenge of treading into the unfamiliar territory of biomedical applications of lasers in general and development of laser based methods for diagnosis and cure of cancer, in particular, in 1990. The lab nucleated and nurtured by him for these activities grew into Biomedical Applications Section and Instrumentation Division (LBAID). Apart from LBAID Dr Gupta also headed the Laser Materials and Devices Division and retired as a Distinguished Scientist and Acting Director of Raja Ramanna Center for Advanced Technology, RRCAT, as the institute is now called. Under Prof Gupta’s leadership, Laser induced fluorescence and Raman spectroscopy-based instruments for early detection of cancer have been fabricated and tested in real clinical setup. Prof Gupta’s group has also worked in diverse areas of Optical Coherence Tomography, optical tweezers, time resolved fluorescence, SNOM, photodynamic therapy, optics of turbid media etc. With him at the helm, RRCAT has evolved into a most prominent center for research and development in biomedical applications of lasers. More than 350 publications have come in the process. Prof Gupta’s contribution has been recognized in the form of fellowship of National Academy of Sciences India (NASI), Indian Academy of Science (IAS), Optical Society of America (OSA), Homi Bhabha Science and Technology Award and Group Achievement Awards of the Department of Atomic Energy (DAE) and many more accolades. After retirement from RRCAT, Prof Gupta has been actively involved in teaching, first in IISER Bhopal and then in IIT Delhi.


Anindya Dutta
Guest Editor
Oct 1, 2019

About Guest Editor

Prof Anindya Datta

Prof Anindya Datta obtained his Ph D in 1994 from Jadavpur University, Kolkata, under the guidance of Prof Kankan Bhattacharyya in Indian Association for the Cultivation of Science. He was a Postdoctoral Fellow in Iowa State University and Visiting Scientist in Raja Ramanna Center of Advanced Technology, Indore, before joining Department of Chemistry, IIT Bombay, as an Assistant Professor in 2002. Presently, he is Professor and Head of the Department, Chemistry, IIT Bombay. His research interest in ultrafast dynamics in chemical systems, fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy. He has received Bronze Medal from Chemical Research Society of India and is a Fellow of National Academy of Sciences, India.

N Ghosh
Vinod Rastogi
Editors
Oct 2, 2019

Foreword

“LIFE” WITH PHOTONS: Universal Health Care.

As of March 2020, the estimated world population stands at >7.775 billion [1]. Of this, the 35 OECD (Organization of Economic Development and Cooperation) “developed” countries all together have a total ~1.291 billion (16.6 % of total), more than 80% of which live in urban areas, with only about 6% of the remaining, in remote areas [2]. The rest of more than 6.4 billion people in the world are mostly in the developing countries. Of these, India alone accounts for 1.38 billion (17.7%), only ~32% of them in urban areas, 68% in rural areas [1].
An idea of the humongous disparity in human development between the two groups- OECD and the Rest of the world- can be seen in the “Human Development Index-HDI-” [3]. All the OECD countries belong to the “Very High HDI” group (HDI > 0.8, except Mexico & Turkey 0.77 & 0.79, respectively) while the “Developing and Underdeveloped” countries (including India) all have medium or low HDI (< 0.7). India, 129th in a list of 189, has an HDI = 0.65 only. One of the important parameters, perhaps the most important, defining HDI is “Access to quality health” [3]. The difference at birth, in life expectancy between low and very high human development countries, is 19 years; more than a quarter of a lifespan! Lost just because of your place of birth, a choice not made by you! Article 25 of the Universal Declaration of Human Rights states: “Everyone has the right to a standard of living adequate for the health and well-being of himself and of his family--” (www.un.org/en/universal-declaration-human-rights).
One of the great anomalies in health-care services in countries like India is the fact that, the small fraction of urban population consisting mostly of employees of Public and Private Sector enterprises, are given complete, almost free, health care by their employers, the Government and Industries. In other words, the health-care financial burden on the country at present is mostly due to health care given to the few million Public and Private Sector regular employees who can afford it even otherwise, while people at the lower end of economic and social status, without any regular employment, who need it most and who cannot afford it, are very poorly served. This highly biased distribution of health-care services, combined with the huge disparity in income between urban and rural populations, have led to a situation in which routine health care has become almost unavailable and unaffordable for the bulk of the country’s population.
Though a host of illnesses contribute to the health-care burden, it is well recognized that a major part of it is due to the “killer” diseases which may require prolonged therapies (because they are detected at advanced stages), and costly medicines, and which also cause considerable loss of man-power, even before detection, because of physical and mental incapacities inflicted on the victims by the diseases even under dormant/indolent conditions. It is also well-known that the “Killer” diseases, both non-communicable (Cardiovascular diseases, various types of cancer, diabetes, child malnutrition), and communicable (TB, Malaria, Diarrhoea), are all amenable to successful therapy if detected in earlier stages. Cost-effective methods for screening and early detection of these diseases or their causative factors, which can be made easily available for universal applications, can obviously contribute to a considerable extent to reduction of the health-care burden.
For the 70% of the rural population in developing countries like India, regular screening facilities, available only at multi-speciality hospitals in big towns and cities, are almost always unavailable and un-affordable, not only because of their high cost, but also because of the difficulties for the subjects to leave their home/work-place, for repeated screening. In addition to this, most of the rural poor are unaware of the need for regular screening. Even those who are aware, are highly reluctant to undergo the current personally invasive screening programs, like mammography, Trans-Vaginal Sonography, colposcopy, sigmoidoscopy etc., for screening and early detection of diseases like cancers of breast, ovarian, cervical, and colo-rectal, which constitute some of the major killers. Similar situations arise in screening for coronary diseases, since methods like cardiac CT, Coronary CT Angiography (CTA), Myocardial Perfusion Imaging (MPI), etc., are not easily accessible for the rural population. For diagnosis of pre-diabetic and diabetic conditions, currently a few markers like HbA1c and glucose are available, but not affordable for regular screening for the rural poor.
The outcome of such deficiencies is a humongous indirect health-care burden on the country in terms of manpower, economy, societal well-being, and human welfare index. In an analysis of global burden of disease study [4], out of 188 countries worldwide, India was ranked as 143rd in health-related sustainable development goals Index.
Since the urban/upper class is readily available for regular screening, even if we can minimize their requirement through advanced technology, we can then divert some of the corresponding financial gains to the rural population of self- or poorly- employed daily wagers, farmers,etc., providing better universal health care.
In general, life expectancy has increased almost two-fold even in the under-developed countries [1,5] and in many of the diseases mentioned above this has lead to serious concerns about health-care. The best method to reduce the health-care burden is “Early Diagnosis”; that is, detect, locate, evaluate, and understand the disease process down to the cellular/molecular level.
The solution for the problem is thus, provide Nation-wide access, on a Point-of-Care (POC)/Location basis through small hospitals, health-care centers, and other public avenues, cost-effective, non- or minimally- invasive screening technology,. That is, accessibility and affordability has to be ensured, awareness has to be created and reluctance for regular screening has to be eliminated.
In many disease conditions, especially in the killer diseases mentioned above, the progression of the disease from the early stage of “Induction” to the final stages of catastrophic conditions is controlled by several bio-molecular processes, which in turn change the bio-molecular scenario in the living systems, including changes in usually present molecular species, production of entire arrays of new bio-molecular species not usually observed in normal state etc. It is to be emphasized that the structures and functions of such “Marker” molecules will also vary during the successive stages of induction, progression, regression or recurrence of the disease, allowing staging of the disease and resultant better therapy modes, if detected.
It follows that the best method for Screening, Early detection, Staging, Therapy- Planning etc. is thus detection of the bio-molecular markers as early as possible, that is, as soon as they start appearing. The markers include, Transcription factors, DNA Re-modelling Enzymes, RNA Binding Proteins, Cellular Receptors and Associated Proteins, Enzymes etc. These markers can be detected not only at the origin of their production( Cells, Tissue sites, and various organs) where the disease starts, but also in other samples since they will enter the blood as soon as they are produced, and will be transported around. The blood (similarly other body fluids like saliva and urine) also thus provides a convenient detection medium since it can be sampled in a minimally invasive way and can be handled and transported easily, by standard procedures. Many of the new molecular marker species will also be transported through blood, from the different locations where they are produced, to the lungs finally. The volatile species among them, called Volatile Organic Compounds-VOCs- thus end up in exhaled breath. Detection of these BREATH markers, Breath Analysis, also provides a powerful, totally non-invasive tool for screening and early detection of diseases like various cancers (which remain clinically silent over long periods), TB, and even viral diseases, and conditions like malnutrition, neurological disorders etc., which usually remain unobserved for long periods until overt symptoms appear.

Foreword_Vol29 Nos 3&4 by V Bhaskaran Kartha.pdf
V Bhaskaran Kartha

Appreciation

Valery V Tuchin

Valery V Tuchin

I met Professor P K Gupta for the first time personally not so long ago at an international meeting in Asia, but I was well acquainted with his brilliant research for much longer time. Prof Gupta is well known for his pioneering research in many relevant areas of biophotonics, including in vivo Raman spectroscopy of tissue neoplasia, polarization fluorescence spectroscopy of normal and malignant tissues, real-time in vivo OCT imaging of brain, depolarization of light in tissues, manipulating cells with optical tweezers, etc. I enjoyed collaborating with Professor Gupta when writing the book “Optical Flow Cytometry: Methods and Diagnosis of Diseases” (WILEY, 2011), where he has an excellent chapter “Optical Tweezers and Cytometry”. I often discuss his outstanding research findings and innovative ideas in my review papers and books.

I hope this special issue of AJP that is dedicated to a creative and productive scientist and great mentor – P K Gupta, will be useful and memorable for the international community of biophotonics.

I also take the opportunity to congratulate Prof Vinod Rastogi my old friend to bring out this special issue to honour Prof Pradeep Gupta, a great scientist of great country. Two months ago, I had an opportunity to visit India for the first time on the invitation of Prof Vinod Rastogi to deliver a Plenary Lecture at VIII ICOPVS2020, Feb 24-29, 2020 at JNCASR, Bangalore, India. I have many pleasant memories of my meeting with many great Indian Scientists like Chandrabhas Narayana, Nirmalya Ghosh, Santhosh Chidangil, and Beer Pal Singh, and many students especially at Physics Department, CCS University, Meerut.

Valery V Tuchin

Tree plantation by Prof Tuchin and others on March 2, 2020

Tree plantation by Prof Tuchin and others on March 2, 2020

Asian Journal of Physics                                                                                                    Vol. 29 Nos 3 & 4, 2020, 203-226


Development and application of Monte Carlo model to study light transport in tissue phantoms


Vipul M Patela, Atul Srivastavaa* and Suneet Singhb
aDepartment of Mechanical Engineering, IITB, Mumbai- 400 076, India
bDepartment of Energy Science and Engineering, IITB, Mumbai-400 076, India
This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications
___________________________________________________________________________________________________________________________________

In the present work, Monte Carlo ray tracing based statistical model is developed to simulate the radiation transport in biological tissue mimicking phantom. Both Snell’s law and Fresnel’s reflection are used to incorporate the optical interface treatment at the common interface of refractive index discontinuity. The effects of (i) nature of scattering, (ii) absorption and scattering coefficients, (iii) tissue layer thickness (iv) refractive index and (v) laser source on quantities such as reflectance, transmittance and fluence rate distribution are investigated. The anisotropic scattering, considered in the present work, is modelled using the Henyey-Greenstein function and linear anisotropic function. The developed model is further extended to investigate the transient radiation transport in one-dimensional homogeneous participating medium subjected to short-pulse laser irradiation, a phenomenon which holds its importance in the context of photothermal therapy. In order to calculate temporal evolution of temperature in two dimensional biological tissue, the transient Monte Carlo ray tracing model is integrated with the Fourier based heat conduction model. The Monte Carlo based statistical model, developed in the present work, captures reflection and refraction of radiation at the interface where discontinuity in the refractive index exists. The radiation dose distribution is observed to be enhanced with (i) forward-directed nature of the scattering (ii) high absorption coefficient of the tissue (iii) High refractive index of the tissue, and (iv) collimated laser beam source. The radiation dose distribution in multilayered tissue phantom shows peaks in the blood vessels. The time resolved Monte Carlo model, developed in the present work, successfully mimics the effect of various parameters on transient transmittance and reflectance behaviour. The thermal analysis of the two-dimensional tissue phantom, carried out in the present work agrees well with the discrete ordinate method based numerical model. © Anita Publications. All rights reserved.
Keywords: Photo-thermal Therapy, Bio-heat Transfer; Monte-Carlo, Radiation Heat Transfer.

References
1. Dombrovsky L A, Timchenko V, Jackson M, Indirect heating strategy of laser induced hyperthermia, An advanced thermal model, Int J Heat Mass Tran, 

    55(2012)4688-4700. 

2. Dombrovsky L A, Randrianalisoa J H, Lipinski W, Timchenko V, Simplified approaches to radiative transfer simulations in laser induced hyperthermia of 

    superficial tumors, Comput Therm Sci, 5(2013)521-530.
3. Randrianalisoa J H, Dombrovsky L A, Lipinski W, Timchenko V, Effects of short-pulsed laser radiation on transient heating of superficial human tissues, Int J 

    Heat Mass Tran, 78(2014)488-497.
4. Robinson D S, Prel J-M, Denham D B, González-Cirre X, Manns F, Milne P J, Schachner R D, Herron A J, Comander J, Hauptmann G H, Interstitial laser 

     hyperthermia model development for minimally invasive therapy of breast carcinoma, J Am Coll Surgeons, 186(1998)284-292.
5. Kumar S, Mitra K, Yamada Y, Hyperbolic damped-wave models for transient light-pulse propagation in scattering media, Appl Opt, 35(1996)3372-3378.
6. Mitra K, Lai M S, Kumar S, Transient radiation transport in participating media within a rectangular enclosure, J Thermophys Heat Tr, 11(1997)409-414.
7. Mitra K, Kumar S, Development and comparison of models for light-pulse transport through scattering–absorbing media, Appl Opt, 38(1999)188-196.
8. Tan Z M, Hsu P F, An integral formulation of transient radiative transfer, J Heat Transfer, 123(2001)466-475.
9. Tan Z M, Hsu P F, Transient radiative transfer in three-dimensional homogeneous and nonhomogeneous participating media, J Quant Spectrosc Radiat Transf, 73

    (2002)181-194.
10. Wu C Y, Wu S H, Integral equation formulation for transient radiative transfer in an anisotropically scattering medium, Int J Heat Mass Tran, 43(2000)2009-

      2020.
11. Yamada Y, Hasegawa Y, Time-dependent FEM analysis of photon migration in biological tissues, JSME Int J Ser B Fluids Therm Eng, 39(1996)754-761.
12. Wu C Y, Ou N R, Differential approximations for transient radiative transfer through a participating medium exposed to collimated irradiation, J Quant 

      Spectrosc Radiat Transf, 73(2002)111-120.
13. Guo Z, Kumar S, Discrete-ordinates solution of short-pulsed laser transport in two-dimensional turbid media, Appl Opt, 40(2001)3156-3163.
14. Sakami M, Mitra K, Hsu P f, Analysis of light-pulse transport through two-dimensional scattering and absorbing media, J Quant Spectrosc Radiat Transf, 

      73(2002)169-179.
15. Guo Z, Kumar S, Three-dimensional discrete ordinates method in transient radiative transfer, J Thermophys Heat Tr, 16(2002)289-296.
16. Mishra S C, Chugh P, Kumar P, Mitra K, Development and comparison of the DTM, the DOM and the FVM formulations for the short-pulse laser transport 

      through a participating medium, Int J Heat Mass Tran, 49(2006)1820-1832.
17. Kumar S, Srivastava A, Numerical investigation of thermal response of laser irradiated tissue phantoms embedded with optical inhomogeneities, Int J Heat 

      Mass Tran, 77(2014)262-277.
18. Kumar S, Srivastava A, Thermal analysis of laser-irradiated tissue phantoms using dual phase lag model coupled with transient radiative transfer equation, Int J 

      Heat Mass Tran, 90(2015)466-479.
19. Kumar S, Srivastava A, Numerical investigation of the influence of pulsatile blood flow on temperature distribution within the body of laser-irradiated 

      biological tissue phantoms, Int J Heat Mass Tran, 95(2016)662-677.
20. Patidar S, Kumar S, Srivastava A, Singh S, Lattice Boltzmann method-based solution of radiative transfer equation for investigating light propagation through 

      laser-irradiated tissue phantoms, Int Commun Heat Mass, 84(2017)144-149.
21. Kumar S, Srivastava A, Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer equation, Appl Math Model, 52(2017)378-403.
22. Wilson B C, Adam G, A Monte Carlo model for the absorption and flux distributions of light tissue, Med Phys, 10(1983)824-830.
23. Deply D T, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J, Estimation of optical path length through tissue from direct time of flight measurement, Phys 

      Med Biol, 33(1988)1433-1442.
24. Jacques S L, Time resolved propagation of ultrashort laser pulses within turbid tissues, Appl Opt, 28(1989)2223-2229.
25. Flock S T, Patterson M S, Wilson B C, Wyman D R, Monte Carlo modeling of light propagation in highly scattering tissues. I. Model predictions and 

      comparison with diffusion theory, IEEE T Bio-Med Eng, 36(1989)1162-1168.
26. Madsen S J, Wilson B C, Patterson M S, Park Y D, Jacques S J, Hefetz Y, Experimental tests of a simple diffusion model for the estimation of scattering and 

      absorption coefficients of turbid media from time-resolved diffusion reflectance measurements, Appl Opt, 31(1992)3509-3517.
27. Hasegawa Y, Yamada Y, Tamura M, Nomura Y, Monte Carlo simulation of light transmission through living tissues, Appl Opt, 30(1991)4515-4520.
28. Takahashi Y, Yamada Y, Hasegawa Y, Effect of Fresnel Reflection on Time-Resolved Transmission Measurement, Proceedings of SPIE, The International 

      Society for Optical Engineering, 2326, Bellingham, WA, 1994, pp. 495-504
29. Brewster M Q, Yamada Y, Optical Properties of Thick, Turbid Media from Picosecond Time-Resolved Light Scattering Measurements, Int J Heat Mass Tran, 

      38(1995)2569-2581.
30. Patterson M S, Chance B, Wilson B C, Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties, Appl Opt, 

      28(1989)2331-2336.
31. Jacques S L, Wang L, Monte Carlo modelling of light transport in tissue, Optical-Thermal Response of Laser-Irradiated Tissue, (Plennum Press, New York), 

      1995.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                    Vol. 29 Nos 3 & 4, 2020, 229-248


Excited state relaxation dynamics of trans-4-[4-(dimethylamino)–styryl]-1-methylpyridinium iodide (DASPI):

Dimethylanilino or methylpyridinium twist?        


Chandralekha Singh1, Brindaban Modak2,  Rajib Ghosh1 and Dipak K Palit1, 3

1Radiation & Photochemistry Division, Bhabha Atomic Research Center, Mumbai-400 085, India.

2Theoretical Chemistry Section, Bhabha Atomic Research Center, Mumbai-400 085, India.

3UM-DAE Centre for Excellence in Basic Sciences, Mumbai University, Kalina Campus, Santacruz (E), Mumbai-400 098, India

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

___________________________________________________________________________________________________________________________________

Excited state dynamics of trans-[4-(dimethylamino)-styryl]-1-methylpyridinium iodide (DASPI) hasbeen studied using femtosecond transient absorption spectroscopic technique and quantum chemical calculations using DFT and TDDFT methods. Time evolution of the transient absorption and fluorescence spectra and temporal dynamics recorded in a wide spectral range and in wide varieties of solvents suggest that relaxation of the excited singlet (S1) state is associated with a conformational relaxation process prior to undergoing intersystem crossing to the triplet (T1) state (in nonpolar or less polar solvents) or internal conversion to the ground (S0) state (in polar solvents). TDDFT calculations reveal that the single bond twisting process involving the N,N-dimethylaniline group is barrierless (barrier height is 0.015 ev), but that involving the N-methylpyridinium group is associated with a moderate barrier (0.12 eV), whereas twisting of the N,N-dimethylamine group or the olefinic double bond needs to overcome a large barrier (0.6 and 1.93 eV, respectively). Based on these results, the ultrafast relaxation of the local excited (LE) state has been assigned to the intramolecular charge transfer (ICT) process associated with the barrierless twisting of the N, N-dimethylaniline (donor) group, leading to formation of the TICT state, which is nonfluorescent. In low and moderate polarity solvents, small barrier along the torsional coordinates govern the twisting dynamics leading to LE to TICT relaxation, which is slower than solvation. On the other hand, in polar aprotic solvents, CT relaxation is barrierless and  controlled by solvent relaxation dynamics. © Anita Publications. All rights reserved.

Keywords: Excited state dynamics, Transient absorption and fluorescence spectroscopy, DFT and TDDFT methods

References

  1.   Lacroix P G, Clement R, Nakatani K, Zyss J, Ledoux I, Stilbazolium-MPS3 Nanocomposites with Large Second-Order Optical Nonlinearity and Permanent

        Magnetization, Science, 263(1994)658-660.

  2.   Ogawa M, Kuroda K, Photofunctions of Intercalation Compounds, Chem Rev, 95(1995)399-438.

  3.   Coradin T,  Clement R,  Lacroix P G, Nakatani K, From Intercalation to Aggregation:  Nonlinear Optical Properties of Stilbazolium Chromophores−MPS3

        Layered Hybrid Materials, Chem Mater, 8(1996)2153-2158.

  4.   Lagadic I, Lacroix P G, Clement R, Layered MPS3 (M = Mn, Cd) Thin Films as Host Matrixes for Nonlinear Optical Material Processing, Chem Mater,

        9(1997)2004-2012.

  5.   Görner H, Gruen H, Photophysical properties of quaternary salts of 4-dialkylamino-4′-azastilbenes and their quinolinium analogues in solution: IX, J

        Photochem, 28(1985)329-350.

  6.   Ephardt H, Fromhertz P, Fluorescence and photoisomerization of an amphiphilicaminostilbazolium dye as controlled by the sensitivity of radiationless

        deactivation to polarity and viscosity, J Phys Chem, 93(1989)7717-7725.

  7.   Ephardt H, Fromhertz P, Anilinopyridinium: solvent-dependent fluorescence by intramolecular charge transfer, J Phys Chem, 95(1991)6792-6797.

  8.   Fromhertz P, Heilemann A, Twisted internal charge transfer in (aminophenyl)pyridinium, J Phys Chem, 96(1992) 6864-6866.

  9.   Strehmel B, Seifert H, Rettig W, Photophysical Properties of Fluorescence Probes. 2. A Model of Multiple Fluorescence for Stilbazolium Dyes Studied by

        Global Analysis and Quantum Chemical Calculations, J Phys Chem B, 101(1997)2232-2243.

10.   Strehmel B, Rettig W, Photophysical properties of fluorescence probes I: dialkylaminostilbazolium dyes, J Biomed Opt, 1(1996)98; doi.org/10.1117

        /12.227538.

11.   Kim J, Lee M, Excited-State Photophysics and Dynamics of a Hemicyanine Dye in AOT Reverse Micelles, J Phys Chem, A 103(1999)3378-3382.

12.   Kim J, Lee M, Yang J. -H, Choy J. -H, Photophysical Properties of Hemicyanine Dyes Intercalated in Na−Fluorine Mica, J Phys Chem A,

        104(2000)1388-1392.

13.   Cao X, Tolbert R, McHale J L, Edwards W D, Theoretical Study of Solvent Effects on the Intramolecular Charge Transfer of a Hemicyanine Dye, J Phys

        Chem, 102(1998)2739-2748.  

14.   van der Meer M J, Zhang  H, Rettig W, Glasbeek M, Femto- and picosecond fluorescence studies of solvation and non-radiative deactivation of ionic styryl

        dyes in liquid solution, Chem Phys Lett, 320(2000)673-680.

15.   Shim T, Lee M, Kim S, Sung J, Rhee B K, Kim D, Kim H, Yoon K B, Photoluminescence decay lifetime measurements of hemicyanine derivatives of

        different alkyl chain lengths, Mater Sci Eng C, 24(2004)83-85.

16.   Jee A.-Y, Lee M, Excited-State Dynamics of a Hemicyanine Dye in Polymer Blends, ChemPhysChem, 11(2010) 793-795.

17.   Jee A.-Y, Bae E, Lee M, Internal motion of an electronically excited molecule in viscoelastic media, J Chem Phys, 133(2010)14507-14514.

18.   Shim T, Lee M H, Kim D, Kim H S, Yoon K B, Fluorescence Properties of Hemicyanine in the Nanoporous Materials with Varying Pore Sizes, J Phys Chem

        B, 113(2008)966-969.

19.   Shim T, Lee M H, Kim D, Ouchi Y, Comparison of Photophysical Properties of the Hemicyanine Dyes in Ionic and Nonionic Solvents, J Phys Chem B,

        112(2008)1906-1912.

20.   Jonkman M, Meulen P Van der, Zhang H, Glasbeek M, Subpicosecond solvation relaxation of DASPI in polar liquids, Chem Phys Lett, 256(1996)21-26.

21.   Glasbeek M, Femtosecond solvation and charge transfer dynamics in liquid solution, Czech J Phys, 48(1998) 417-422.

22.   Panigrahi M, Dash S, Patel S, Mishra M K, Preferential Solvation of Styrylpyridinium Dyes in Binary Mixtures of Alcohols with Hexane, Dioxane, and

        Dichloromethane, J Phys Chem B, 115(2011)99-108.

23.   Gassin G. -M, Villamania D, Vauthey E, Nonradiative Deactivation of Excited Hemicyanines Studied with Submolecular Spatial Resolution by Time-

        Resolved Surface Second Harmonic Generation at Liquid−Liquid Interfaces, J Am Chem Soc, 133(2011)2358-2361.

24.   Singh C, Modak B, Mondal J A, Palit D K, Ultrafast Twisting Dynamics in the Excited State of Auramine, J Phys Chem A, 115(2011)8183-8196.

25.   Marques M A L, Ullrich C, Nogueira F, Rubio A, Gross E K U, (eds), Time-Dependent Density-Functional Theory; Lecture Notes in Physics, (Springer

        Verlag: Berlin), Vol 706, 2006.

26.   Runge E, Gross R K U, Density-Functional Theory for Time-Dependent Systems, Phys Rev Lett, 52(1984)997- 1000.

27.   Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C, Electronic structure calculations on workstation computers: The program system turbomole, Chem Phys Lett,

        162(1989)165-169.

28.   Adamo C,  Barone V, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J Chem Phys, 110(1999)6158-6170

29.   Perdew J P,  Burke K, Ernzerhof  M, Generalized Gradient Approximation Made Simple, Phys Rev Lett, 77(1996) 3865-3868.

30.   Furche F, Ahlrichs R, Adiabatic time-dependent density functional methods for excited state properties, J Chem Phys, 117(2002)7433-7447.

31.   Klamt A G, Schüürmann G, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, J

        Chem Soc Perkin Trans, 2(1993)799-805.

32.   Schäfer A, Horn H, Ahlrichs R, Fully optimized contracted Gaussian basis sets for atoms Li to Kr, J Chem Phys, 97(1992)2571-2577.

33.   Schäfer A, Horn H, Ahlrichs R, Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr, J Chem Phys,

        100(1994)5829-5835.

34.   Reichardt C, Solvents and Solvent Effects in Organic Chemistry, (VCH Verlagsgesellschaft mbH, D-6940 Weinheim, FRG), 1988.

35.   Horng M L, Gardecki J A, Papazyan A,  Maroncelli M,  Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited, J Phys Chem,

        99(1995)17311-17337.

36.   Shibasaki K, Itoh K, Surface-enhanced resonance Raman scattering study on the hemicyanine dye 4- 2-(4-dimethylaminophenyl)ethenyl.-1-methylpyridinium

        iodide adsorbed on a silver electrode surface, J Raman Spectrosc, 22(1991)753-758.

37.   Jarzeba W, Walker G C, Johnson A E, Barbara P F, Nonexponential solvation dynamics of simple liquids and mixtures, Chem Phys, 152(1991)57-68.

38.   Simon J D, Time-resolved studies of solvation in polar media, Acc Chem Res, 21(1988)128-134.

39.   Harju T O, Huizer A H, Varma C A G O, Non-exponential solvation dynamics of electronically excited 4-aminophthalimide in n-alcohols, Chem Phys,

        200(1995)215-224.

40.   Mondal P K, Saha S, Karmakar  R, Samanta A, Solvation dynamics in room temperature ionic liquids: Dynamic Stokes’shift studies of fluorescence of dipolar

        molecules, Curr Sci, 90(2006)301-310.

41.   Hynes M W, (Ed-in-Chief), CRC Handbook of Physics & Chemistry, 93rd Edn, (Taylor & Francis Group, Boca Raton Fl), 2012 – 2013, p 6-231.

42.   Cheng R R, Uzawa T, Plaxco K W, Makarov D E, The Rate of Intramolecular Loop Formation in DNA and Polypeptides: The Absence of the Diffusion-

        Controlled Limit and Fractional Power-Law Viscosity Dependence,  J Phys Chem B, 113(2009)14026-14034.

43.   Kramers H A, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7 (1940)284-304.

44.   Talkier P, Hanggi P, New Trends in Kramers Reaction Rate Theory, (Kluwer Academic, London), 1995.

45.   Cremers A, Windsor M W, A study of the viscosity-dependent electronic relaxation of some triphenylmethane dyes using picosecond flash photolysis, Chem

        Phys Lett, 71(1980)27-32.

46.   Bagchi B, Fractional viscosity dependence of relaxation rates and non-steady-state dynamics in barrierless reactions in solution, Chem Phys Lett,

        138(1987)315-320.

47.   Stsiapura V I,  Maskevich A A,  Kuzmitsky V A, Uversky V N, Kuznetsova I M, Turoverov K K, Thioflavin T as a Molecular Rotor: Fluorescent Properties of

        Thioflavin T in Solvents with Different Viscosity, J Phys Chem B, 112(2008)15893-15902.

48.   Mohrschladt R, Schroeder J, Schwarzer D, Tore J, Vöhringer P, Barrier crossing and solvation dynamics in polar solvents:Photoisomerization of trans-stilbene

        and E, E-diphenylbutadiene in compressed alkanols, J Chem Phys, 101(1994)7566-7579.

49.   Nagasawa Y, Ando Y, Kataoka D, Matsuda H, Miyasaka H, Okada T, Ultrafast Excited State Deactivation of Triphenylmethane Dyes, J Phys Chem A,

        106(2002)2024-2035.

50.   Morimoto A, Biczók L, Yatsuhashi T, Shimada T, Baba S, Tachibana T, Tryk D A, Inoue H, Radiationless deactivation process of 1-Dimethylamino-

        9-fluorenone induced by conformational relaxation in the excited state: A new model molecule for the TICT process, J Phys Chem A, 106(2002)10089-10095.

51.   Engleman R,  Jortner J, The energy gap law for radiationless transitions in large molecules, Mol Phys, 18

        (1970)145-164.                                                                                                            

52.   Freed K F, Jortner J, Multiphonon Processes in the Nonradiative Decay of Large Molecules, J Chem Phys, 52 (1970)6272-6291.

53.   Martin M M, Plaza P,  Changenet P,  Meye Y H, Investigation of excited-state charge transfer with structural change in compounds containing anilino

        subunits by subpicosecond spectroscopy, J Photochem Photobiol: A Chem, 105(1997)197-204.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                    Vol. 29 Nos 3 & 4, 2020, 249-254


Integrated digital holographic and atomic force microscope for refractive index characterization of microscopic objects


N Cardenas and S K Mohanty

Nanoscope Technologies LLC, 1312 Brown Trail Bedford, TX 76022.

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

___________________________________________________________________________________________________________________________________

Refractive index characterization of both living and non-living microscopic objects is of significant interest for variety of biomedical applications. Here, we report use of an integrated Atomic force microscope (AFM) and Digital holographic microscope (DHM) for refractive index mapping. Though DHM yields quantitative phase properties of the sample with high temporal resolution, the phase measurements are inherently dependent on both the refractive index and physical thickness. Integration of DHM and AFM on the same inverted microscope led to realization of a powerful platform for nanoscale mapping of phase and thickness of microscopic samples. © Anita Publications. All rights reserved.

Keywords: Digital holographic microscopy, Atomic Force Microscope, Refractive index mapping, Surface topography, Nanoscopic imaging.

References

  1.   Lee T M,  Oldenburg A L, Sitafalwalla S, Marks D L, Luo W, Toublan F J J, Suslick K S, Boppart S A, Engineered microsphere contrast agents for optical 

       coherence tomography, Opt Lett, 28(2003)1546-1548.

  2.   Klibanov A L, Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging, Adv Drug Deliver Rev, 37(1999)139-157.

  3.   Barton J K, Hoying J B, Sullivan C J, Use of microbubbles as an optical coherence tomography contrast agent, Acad Radiol, 9(2002)S52-S55.

  4.   Park Y, Diez-Silva M, Popescu G, Lykotrafitis G, Choi W, Feld  M S, Suresh S, Refractive index maps and membrane dynamics of human red blood cells 

        parasitized by Plasmodium falciparum, PNAS, 105(2008)13730-13735.

  5.   Hoyt K, Castaneda B, Zhang M, Nigwekar P, di Sant’agnese P A, Joseph J V, Strang J, Rubens D J, Parker K J,  Tissue elasticity properties as biomarkers for 

        prostate cancer, Cancer Biomark, 4(2008)213-225.

  6.   Airaksinen K E J, Salmela P I, Linnaluoto M K, Ikäheimo M J, Ahola K, Ryhänen L J, Diminished arterial elasticity in diabetes: association with fluorescent 

        advanced glycosylation end products in collagen, Cardiovascular Research,  27(1993)942-945.

  7.   Kang J W, Lue N, Kong C R, Barman I, Dingari N C, Goldfless S J, Niles J C, Dasari R R, Feld M S, Combined confocal Raman and quantitative phase 

        microscopy system for biomedical diagnosis, Biomed Opt Express, 2(2011)2484-2492.

  8.   Cuche E, Bevilacqua F, Depeursinge C, Digital holography for quantitative phase-contrast imaging, Opt Lett, 24(1999)291-293.

  9.   Yu L F, Mohanty S, Zhang J, Genc S, Kim M K, Berns M W, Chen Z P, Digital holographic microscopy for quantitative cell dynamic evaluation during laser 

        microsurgery, Opt Express, 17(2009)12031-12038.

10.   Cardenas N, Kumar S, Mohanty S, Appl Phys Lett, 101(2012)203702-203704.

11.   Cardenas N, Mohanty S, Decoupling of geometric thickness and refractive index in quantitative phase microscopy, Opt Lett, 38(2013)1007-1009.

12.   Binnig G, Quate C F, Gerber C, Atomic force microscope, Phys Rev Lett, 56(1986)930-933.

13.   Goodman J W, Introduction to Fourier optics, 2nd edn, (McGraw-Hill, New York), 1996.

14.   Goldstein R M, Zebker H A, Werner C L, Satellite radar interferometry: two-dimensional phase unwrapping, Radiol Sci, 23(1988)713-720.

15.   Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez-Herrero J, Baro A M, WSXM: A software for scanning probe microscopy and a tool for 

        nanotechnology, Rev Sci Instrum, 78(2007)013705; doi.org/10.1063/1.2432410. 

Integrated digital holographic and atomic force microscope for refractive index characterization of microscopic objects.pdf
N Cardenas and S K Mohanty

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                    Vol. 29 Nos 3 & 4, 2020, 255-259


Impulsive Stimulated Raman Spectroscopy (ISRS) of nile blue

Shaina Dhamija, Garima Bhutani and Arijit K De*
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali,
Knowledge City, Sector 81, SAS Nagar, Punjab-140 306, India
This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications
___________________________________________________________________________________________________________________________________

We present a method for recording coherent vibrational wavepacket dynamics using Impulsive Stimulated Raman Spectroscopy (ISRS). We use this technique to record Raman spectrum for a dye, nile blue, in methanol under resonant excitation. We show how this method can be used to suppress the background signals to get Raman active modes. © Anita Publications. All rights reserved.
Keywords: Impulsive excitation, Vibrational wavepacket, Fourier transform, Raman spectrum, Resonance enhancement.

References
1. Raman C V, Krishnan K S, A new type of secondary radiation, Nature, 121(1928)501-502.
2. Raman C V, A new radiation, Indian J Phys, 2(1928)387-398.
3. Long Derek A, Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules, (John Wiley and Sons Ltd, England), 2002.
4. Mukamel Shaul, Principles of nonlinear optical spectroscopy, (Oxford University Press Inc., New York), 1995.
5. Dhar L, Rogers J A, Nelson K A, Time-resolved vibrational spectroscopy in the impulsive limit, Chem Rev, 94(1994)157-193.
6. Lee Duckhwan, Albrecht Andreas Christopher, On Global Energy Conservation in Nonlinear Light-Matter Interaction: The Nonlinear Spectroscopies, Active 

    and Passive in Advances in Chemical Physics, eds Prigogine Ilya, Rice Stuart A, (John Wiley & Sons, Inc.), 83(1992)60–65.
7. Dhamija S, Thakur B, Guptasarma P, De A K, Probing the excited state dynamics of Venus: origin of dual-emission in fluorescent proteins, Faraday Discuss, 

     207(2018)39-54.
8. Silori Y, Seliya P, De A K, Early Time Solvation Dynamics Probed by Spectrally Resolved Degenerate Pump-Probe Spectroscopy, ChemPhysChem, 

    20(2019)1488-1496.
9. Lawless M K, Mathies R A, Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities, J Chem Phys, 

    96(1992)8037-8045.
10. Hickstein D D, Goldfarbmuren R, Darrah J, Erickson L, Johnson L A, Rapid, accurate, and precise concentration measurements of a methanol–water mixture 

      using Raman spectroscopy, OSA Continuum, 1(2018)1097-1110.
11. Kuramochi H, Takeuchi S, Tahara T, Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications, 

      Rev Sci Instrum, 87(2016)043107; doi.org/10.1063/1.4945259.

Impulsive Stimulated Raman Spectroscopy (ISRS) of nile blue.pdf
Shaina Dhamija, Garima Bhutani and Arijit K De

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                    Vol. 29 Nos 3 & 4, 2020, 261-272


Raman Theranostics: An overview of Raman applications in therapeutic monitoring


Kshama Pansare1 and C Murali Krishna1,2

1Advanced Center for Treatment, Research and Education in Cancer (ACTREC),
Tata Memorial Center (TMC), Kharghar, Navi Mumbai, Maharashtra - 410 210, India

2Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH- 400 085, India

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

___________________________________________________________________________________________________________________________________

Cancer, a multigenic and multicellular disease, is often diagnosed at an advanced stage and therapeutic resistance further worsens the prognosis. This raises a pressing clinical need for monitoring therapeutic response during treatment. Raman spectroscopy, a rapid, label-free, non-invasive and non-destructive optical vibrational spectroscopy, has been widely employed for cancer detection, intraoperative surgical margin assessment, chemotherapeutic drug monitoring and prediction of radiation response. The molecule specific Raman spectral signature aids in discriminating treated vs. untreated and responders vs. non-responders during chemotherapy and radiotherapy. Recent times have witnessed a surge in applications of RS, both in vitro and in vivo. The review is an effort to augment awareness of the myriad applications of RS in the field of therapeutic monitoring. © Anita Publications. All rights reserved.

Keywords: Raman spectroscopy, Therapeutic monitoring, Surgical margin, Cancer field effects, Chemotherapy, Radiotherapy.

References
    1.    Bray F, Ferlay J, Soerjomataram I, Siegel R L, Torre L A, Jemal A, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality

           worldwide for 36 cancers in 185 countries, CA Cancer J Clin, 68(2018)394-424.
    2.    Santos I P, Barroso E M, Schut T C B, Caspers P J, van Lanschot C G F, Choi D H, van der Kamp M F, Smits R W H, van Doorn R, Verdijk R M, Hegt V N,

           von der Thüsen J H, van Deurzen C H M, Koppert L B,  van Leenders G J L H, Ewing-Graham P C, van Doorn H C, Dirven C M F, Busstra M B, Hardillo J,

           Sewnaik A, Hove I, Mast H, Monserez D A, Meeuwis C, Nijsten T, Wolvius E B, de Jong R J B, Puppels G J, Koljenović S, Raman spectroscopy for cancer

           detection and cancer surgery guidance: translation to the clinics, Analyst, 142(2017)3025-3047.
    3.    Chen P, Shen A, Zhou X, Hu J, Bio-Raman spectroscopy: A potential clinical analytical method assisting in disease diagnosis, Anal

           Methods, 3(2011)1257-1269.
    4.    Kendall C, Isabelle M, Bazant-Hegemark F, Hutchings J, Orr L, Babrah J, Baker R, Stone N, Vibrational spectroscopy: A clinical tool for cancer

           diagnostics, Analyst, 134(2009)1029-1045.
    5.    Baker M J, Hussain S R, Lovergne L, Untereiner V, Hughes C, Lukaszewski R A, Thiéfin G, Sockalingum G D, Developing and understanding biofluid

           vibrational spectroscopy: A critical review, Chem Soc Rev, 45(2016)1803-1818.
    6.    Old O J, Fullwood L M, Scott R, Lloyd G R, Almond L M, Shepherd N A, Stone N, Barr H, Kendall C, Vibrational spectroscopy for cancer diagnostics,

           Anal Methods, 6(2014)3901-3917.
    7.    Mahadevan-Jansen A, Richards-Kortum R, Raman spectroscopy for cancers and precancers, J Biomed Opt, 1(1996)31-71.
    8.    Cordero E, Latka I, Matthäus C, Schie I W, Popp J, In-vivo Raman spectroscopy: from basics to applications, J Biomed Opt, 23(2018)071210;

           doi.org/10.1117/1.JBO.23.7.071210
    9.    Ellis D I, Goodacre R, Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy, Analyst,

           131(2006)875-885.
    10.  Redd D C, Feng Z C, Yue K T, Gansler, T S, Raman spectroscopic characterization of human breast tissues: implications for breast cancer diagnosis, Appl

           Spectrosc, 47(1993)787-791.
    11.  Bergholt M S, Zheng W, Ho K Y, Yeoh K G, Huang Z, Raman endoscopy for objective diagnosis of early cancer in the gastrointestinal system, J Gastroint

           Dig Syst, S1(2013)008; doi: 10.4172/2161-069X.S1-008
    12.  Lui H, Zhao J, McLean D, Zeng H, Real-time Raman spectroscopy for in vivo skin cancer diagnosis, Cancer Res, 72(2012)2491-2500.
    13.  Teh S K, Zheng W, Ho K Y, Teh M, Yeoh K G, Huang Z, Near-infrared Raman spectroscopy for gastric precancer diagnosis, J Raman Spectrosc,

           40(2009)908-914.
    14.  Pansare K, Pillai D, Parab S, Singh S R, Kannan S, Ludbe M, Hole A, Murali Krishna C, Gera P, Quality assessment of cryopreserved biospecimens

           reveals presence of intact biomolecules, J Biophotonics, 12(2019)e201960048; doi.org/10.1002/jbio.201960048.
    15.  Harder S J, Matthews Q, Isabelle M, Brolo A G, Lum J J, Jirasek A, A Raman spectroscopic study of cell response to clinical doses of ionizing

           radiation, Appl Spectrosc, 69(2015)193-204.
    16.  Yasser M, Shaikh R, Chilakapati M K, Teni T, Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated ionizing

           radiation, PloS One, 9(2014)e97777; doi: 10.1371/journal.pone.0097777
    17.  Pansare K, Singh S R, Chakravarthy V, Gupta N, Hole A, Gera P, Sarin R, Krishna C M, Raman spectroscopy: An exploratory study to identify post-

           radiation cell survival, Appl Spectrosc, 70(2020)553-562.
    18.  Harder S J, Isabelle M, DeVorkin L, Smazynski J, Beckham W, Brolo A G, Lum J J, Jirasek A, Raman spectroscopy identifies radiation response in human

           non-small cell lung cancer xenografts, Sci Rep, 6(2016)1-10.
    19.  Vidyasagar M S, Maheedhar K, Vadhiraja B M, Fernandes D J, Kartha V B, Krishna C M, Raman spectroscopy of tissues collected at different fractions of

           radiation therapy: Response assessment to radiotherapy in cervix cancers, Int J Radiat Oncol Biol Phys, 69(2007)S388-S389.
    20.  Vidyasagar M S, Maheedhar K, Vadhiraja B M, Fernendes D J, Kartha V B, Krishna C M, Prediction of radiotherapy response in cervix cancer by Raman

           spectroscopy: a pilot study, Biopolymers, 89(2008)530-537.
    21.  Rubina S, Vidyasagar M S, Krishna C M, Raman spectroscopic study on prediction of treatment response in cervical cancers, J Innov Opt Health Sci,

           6(2013)1350014; doi.org/10.1142/S1793545813500144.
    22.  Kuo W C, Kim J, Shemonski N D, Chaney E J, Spillman D R, Boppart S A, Real-time three-dimensional optical coherence tomography image-guided

           core-needle biopsy system, Biomed Opt Express, 3(2012)1149-1161.
    23.  Shin D, Vigneswaran N, Gillenwater A, Richards-Kortum R, Advances in fluorescence imaging techniques to detect oral cancer and its precursors, Future

           Oncol, 6(2010)1143-1154.
    24.  Song L M W K, Banerjee S, Desilets D, Diehl D L, Farraye F A, Kaul V, Kethu S R, Kwon R S, Mamula P, Pedrosa M C, Rodriguez S A,

           Autofluorescence imaging, Gastrointest Endosc, 73(2011)647-650.
    25.  Kallaway C, Almond L M, Barr H, Wood J, Hutchings J, Kendall C, Stone N, Advances in the clinical application of Raman spectroscopy for cancer

           diagnostics, Photodiagnosis Photodyn Ther, 10(2013)207-219.
    26.  Ellis D I, Cowcher D P, Ashton L, O’Hagan S, Goodacre R, Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic

           tool, Analyst, 138(2013)3871-3884.
    27.  Pence I, Mahadevan-Jansen A, Clinical instrumentation and applications of Raman spectroscopy, Chem Soc Rev, 45(2016)1958-1979.
    28.  Baker M J, Byrne H J, Chalmers J, Gardner P, Goodacre R, Henderson A, Kazarian S G, Martin F L, Moger J, Stone N, Sulé-Suso J, Clinical applications

           of infrared and Raman spectroscopy: state of play and future challenges, Analyst, 143(2018)1735-1757.
    29.  Singh S P, Deshmukh A, Chaturvedi P, Krishna C M, In vivo Raman spectroscopic identification of premalignant lesions in oral buccal mucosa, J Biomed

           Opt, 17(2012)105002; doi.org/10.1117/1.JBO.17.10.105002
    30.  Singh S P, Deshmukh A, Chaturvedi P, Krishna C M, Raman spectroscopy in head and neck cancers: toward oncological applications, J Cancer Res

           Ther, 8(2012)126; dori.10.4103/0973-1482.92227
    31.  Singh S P, Deshmukh A, Chaturvedi P, Krishna C M, In vivo Raman spectroscopy for oral cancers diagnosis. In Biomedical Vibrational Spectroscopy V:

           Advances in Research and Industry, International Society for Optics and Photonics, 8219(2012)82190K; doi.org/10.1117/12.905453
    32.  Singh S P, Krishna C M, Raman spectroscopic studies of oral cancers: correlation of spectral and biochemical markers, Anal Methods, 6(2014)8613-8620.
    33.  Sahu A, Sawant S, Mamgain H, Krishna C M, Raman spectroscopy of serum: an exploratory study for detection of oral cancers, Analyst,

           138(2013)4161-4174.
    34.  Sahu A, Nandakumar N, Sawant S, Krishna C M, Recurrence prediction in oral cancers: a serum Raman spectroscopy study, Analyst, 140(2015)2294-2301.
    35.  Sahu A, Gera P, Pai V, Dubey A, Tyagi G, Waghmare M, Pagare S, Mahimkar M, Krishna C M, Raman exfoliative cytology for oral precancer diagnosis, J

           Biomed Opt, 22(2017)115003; doi.org/10.1117/1.JBO.22.11.115003.
    36.  Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández Á, Assessment of the evolution of cancer treatment

           therapies, Cancers, 3(2011)3279-3330.
    37.  Schirrmacher V, From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment, Int J

           Oncol, 54(2019)407-419.
    38.  Shah A K, Postoperative pathologic assessment of surgical margins in oral cancer: a contemporary review, J Oral Maxillofac Pathol, 22(2018)78-85.
    39.  Graham L J, Shupe M P, Schneble E J, Flynt F L, Clemenshaw M N, Kirkpatrick A D, Gallagher C, Nissan A, Henry L, Stojadinovic A, Peoples G E,

           Current approaches and challenges in monitoring treatment responses in breast cancer, J Cancer, 5(2014)58-68.
    40.  Lieber C A, Nethercott H E, Kabeer M H, Cancer field effects in normal tissues revealed by Raman spectroscopy, Biomed Opt Express, 1(2010)975-982.
    41.  Jabalee J, Carraro A, Ng T, Prisman E, Garnis C, Guillaud M, Identification of malignancy-associated changes in histologically normal tumor-adjacent

           epithelium of patients with HPV-positive oropharyngeal cancer, Anal Cell Pathol, (2018)2018; doi.org/10.1155/2018/1607814
    42.  Erickson-Bhatt S J, Nolan R M, Shemonski N D, Adie S G, Putney J, Darga D, McCormick D T, Cittadine A J, Zysk A M, Marjanovic M, Chaney E J,

           Real-time imaging of the resection bed using a handheld probe to reduce incidence of microscopic positive margins in cancer surgery, Cancer

           Res, 75(2015)3706-3712.
    43.  Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V, Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled

           trial,  Lancet Oncol, 12(2011)997-1003.
    44.  Widhalm G, Kiesel B, Woehrer A, Traub-Weidinger T, Preusser M, Marosi C, Prayer D, Hainfellner J A, Knosp E, Wolfsberger S, 5-Aminolevulinic acid

           induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement, PloS

           One, 8(2013)e76988; doi: 10.1371/journal.pone.0076988. 
    45.  Kaneko S, Kaneko S, Fluorescence-guided resection of malignant glioma with 5-ALA, Int J Biomed Imaging, 2016(2016)6135293; doi.org/10.1155

           /2016/6135293.
    46.  Haka A S, Volynskaya Z, Gardecki J A, Nazemi J, Lyons J, Hicks D, Fitzmaurice M, Dasari R R, Crowe J P, Feld M S, In vivo margin assessment during

           partial mastectomy breast surgery using Raman spectroscopy, Cancer Res, 66(2006)3317-3322.
    47.  Jermyn M, Desroches J, Mercier J, St-Arnaud K, Guiot M C, Leblond F, Petrecca K, Raman spectroscopy detects distant invasive brain cancer cells

           centimeters beyond MRI capability in humans, Biomed Opt Express, 7(2016)5129-5137.
    48.  Shipp D W, Rakha E A, Koloydenko A A, Macmillan R D, Ellis I O, Notingher I, Intra-operative spectroscopic assessment of surgical margins during

           breast conserving surgery, Breast Cancer Res, 20(2018)69; doi.org/10.1186/s13058-018-1002-2.
    49.  MacAulay C, Lam S, Payne P W, LeRiche J C, Palcic B, Malignancy-associated changes in bronchial epithelial cells in biopsy specimens, Anal Quant

           Cytol Histol, 17(1995)55-61.
    50.  Ikeda N, MacAulay C, Lam S, LeRiche J, Payne P, Garner D, Konaka C, Kato H, Palcic B, Malignancy associated changes in bronchial epithelial cells and

           clinical application as a biomarker, Lung Cancer, 19(1998)161-166.
    51.  Susnik B, Worth A, LeRiche J, Palcic B, Malignancy-associated changes in the breast, Changes in chromatin distribution in epithelial cells in normal-

           appearing tissue adjacent to carcinoma, Anal Quant Cytol Histol, 17(1995)62-68.
    52.  Montag A G, Bartels P H, Dytch H E, Lerma-Puertas E, Michelassi F, Bibbo M, Karyometric features in nuclei near colonic adenocarcinoma. Statistical

           analysis, Anal Quant Cytol Histol, 13(1991)159-167.
    53.  Bibbo M, Montag A G, Lerma-Puertas E, Dytch H E, Leelakusolvong S, Bartels P H, Karyometric marker features in tissue adjacent to invasive cervical

           carcinomas, Anal Quant Cytol Histol, 11(1989)281-285.
    54.  Kasper H U, Haroske G, Geissler U, Meyer W, Kunze K D, Diagnostic and prognostic relevance of malignancy-associated changes in cervical smears,

           Anal Quant Cytol Histol, 19(1997)482-488.
    55.  Us-Krasovec M, Erzen J, Zganec M, Strojan-Flezar M, Lavrencak J, Garner D, Doudkine A, Palcic B, Malignancy associated changes in epithelial cells of

           buccal mucosa: a potential cancer detection test, Anal Quant Cytol Histol, 27(2005)254-262.
    56.  Roy H K, Gomes A, Turzhitsky V, Goldberg M J, Rogers J, Ruderman S, Young K L, Kromine A, Brand R E, Jameel M, Vakil P, Spectroscopic

           microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk, Gastroenterology, 135(2008)1069-1078.
    57.  Viehoever A R, Anderson D, Jansen D, Mahadevan-Jansen A, Organotypic Raft Cultures as an Effective In Vitro Tool for Understanding Raman Spectral

           Analysis of Tissue, Photochem Photobiol, 78(2003)517-524.
    58.  Singh S P, Sahu A, Deshmukh A, Chaturvedi P, Krishna C M, In vivo Raman spectroscopy of oral buccal mucosa: a study on malignancy associated

           changes (MAC)/cancer field effects (CFE), Analyst, 138(2013)4175-4182.
    59.  Malhotra V, Perry M C, Classical chemotherapy: mechanisms, toxicities and the therapeutc window, Cancer Biol Ther, 2(2003)1-3.
    60.  DeVita V T, Chu E, A history of cancer chemotherapy, Cancer Res, 68(2008)8643-8653.
    61.  Kang J S, Lee M H, Overview of therapeutic drug monitoring,  Korean J Intern Med, 24(2009)1-10.
    62.  Paci A, Veal G, Bardin C, Levêque D, Widmer N, Beijnen J, Astier A, Chatelut E, Review of therapeutic drug monitoring of anticancer drugs part

           1–cytotoxics, Eur J Cancer, 50(2014)2010-2019.
    63.  Parachalil D R, Brankin B, McIntyre J, Byrne H J, Raman spectroscopic analysis of high molecular weight proteins in solution–considerations for sample

           analysis and data pre-processing, Analyst, 143(2018)5987-5998.
    64.  Parachalil D R, Commerford D, Bonnier F, Chourpa I, McIntyre J, Byrne H J, Raman spectroscopy as a potential tool for label free therapeutic drug

           monitoring in human serum: the case of busulfan and methotrexate, Analyst, 144(2019)5207-5214.
    65.  Yokoyama M, Nishimura T, Yamada K, Ohno Y, Paper-based Raman spectroscopy for on-site therapeutic drug monitoring, In IEEE Healthcare Innovation

           Conference, IEEE, (2014)207-210.
    66.  Filik J, Stone N, Drop coating deposition Raman spectroscopy of protein mixtures, Analyst, 132(2007)544-550.
    67.  Nakajima M, Yamato S, Shimada K, Sato S, Kitagawa S, Honda A, Miyamoto J, Shoda J, Ohya M, Miyazaki H, Assessment of drug concentrations in tears

           in therapeutic drug monitoring: I. Determination of valproic acid in tears by gas chromatography/mass spectrometry with EC/NCI mode, Ther Drug

           Monit, 22(2000)716-722.
    68.  Sato S, Nakajima M, Honda A, Konishi T, Miyazaki H, Pharmacokinetics of theophylline in Guinea pig tears, Drug Metab Pharmacokinet,

           22(2007)169-177.
    69.  Rath S, Sahu A, Gota V, Martínez-Torres P G, Pichardo-Molina J L, Murali Krishna C, Raman spectroscopy for detection of imatinib in plasma: A proof of

           concept, J Innov Opt Health Sci, 8(2015)1550019; doi.org/10.1142/S1793545815500194.
    70.  Panikar S S, Ramírez-García G, Sidhik S, Lopez-Luke T, Rodriguez-Gonzalez C, Ciapara I H, Castillo P S, Camacho-Villegas T, De la Rosa E,

           Ultrasensitive SERS substrate for label-free therapeutic-drug monitoring of paclitaxel and cyclophosphamide in blood serum, Anal Chem,

           91(2018)2100-2111.
    71.  Jaworska A, Fornasaro S, Sergo V, Bonifacio A, Potential of surface enhanced Raman spectroscopy (SERS) in therapeutic drug monitoring (TDM). A

           critical review, Biosensors, 6(2016)47; doi.org/10.3390/bios6030047
    72.  Hidi I J, Mühlig A, Jahn M, Liebold F, Cialla D, Weber K, Popp J, LOC-SERS: towards point-of-care diagnostic of methotrexate, Anal Methods,

           6(2014)3943-3947.
    73.  Fornasaro S, Dalla Marta S, Rabusin M, Bonifacio A, Sergo V, Toward SERS-based point-of-care approaches for therapeutic drug monitoring: the case of

           methotrexate, Faraday Discuss, 187(2016)485-499.
    74.  Dagogo-Jack I, Shaw A T, Tumour heterogeneity and resistance to cancer therapies, Nat Rev Clin Oncol, 15(2018)81-94.
    75.  Vasan N, Baselga J, Hyman D M, A view on drug resistance in cancer, Nature, 575(2019)299-309.
    76.  Holohan C, Van Schaeybroeck S, Longley D B, Johnston P G, Cancer drug resistance: An evolving paradigm, Nat Rev Cancer, 13(2013)714-726.
    77.  Hammoud M K, Yosef H K, Lechtonen T, Aljakouch K, Schuler M, Alsaidi W, Daho I, Maghnouj A, Hahn S, El-Mashtoly S F, Gerwert K, Raman micro-

           spectroscopy monitors acquired resistance to targeted cancer therapy at the cellular level, Sci Rep, 8(2018)1-11; doi:10.1038/s41598-018-33682-7
    78.  Farhane Z, Bonnier F, Byrne H J, An in vitro study of the interaction of the chemotherapeutic drug Actinomycin D with lung cancer cell lines using Raman

           micro-spectroscopy, J Biophotonics, 11(2018)e201700112; doi.org/10.1002/jbio.201700112.
    79.  Yosef H K, Mavarani L, Maghnouj A, Hahn S, El-Mashtoly S F, Gerwert K, In vitro prediction of the efficacy of molecularly targeted cancer therapy by

           Raman spectral imaging, Anal Bioanal Chem, 407(2015)8321-8331.
    80.  El-Mashtoly S F, Yosef H K, Petersen D, Mavarani L, Maghnouj A, Hahn S, Kötting C, Gerwert K, Label-free Raman spectroscopic imaging monitors the

           integral physiologically relevant drug responses in cancer cells, Anal Chem, 87(2015)7297-7304.
    81.  Krishna C M, Kegelaer G, Adt I, Rubin S, Kartha V B, Manfait M, Sockalingum G D, Characterisation of uterine sarcoma cell lines exhibiting MDR

           phenotype by vibrational spectroscopy, Biochimica et Biophysica Acta (BBA-Gen Subjects), 1726(2005)160-167.
    82.  Krishna C M, Kegelaer G, Adt I, Rubin S, Kartha V B, Manfait M, Sockalingum G D, Combined Fourier transform infrared and Raman spectroscopic

           approach for identification of multidrug resistance phenotype in cancer cell lines, Biopolymers, 82(2006)462-470.
    83.  Goel P N, Singh S P, Murali Krishna C, Gude R P, Investigating the effects of Pentoxifylline on human breast cancer cells using Raman spectroscopy, J

           Innov Opt Health Sci, 8(2015)1550004; doi.org/10.1142/S1793545815500042
    84.  Yard B, Chie E K, Adams D J, Peacock C, Abazeed M E, Radiotherapy in the era of precision medicine, Semin Radiat Oncol, 25(2015)227-236.
    85.  Levine E L, Renehan A, Gossiel R, Davidson S E, Roberts S A, Chadwick C, Wilks D P, Potten C S, Hendry J H, Hunter R D, West C M, Apoptosis,

           intrinsic radiosensitivity and prediction of radiotherapy response in cervical carcinoma, Radiother Oncol, 37(1995)1-9.
    86.  West C, Davidson S, Roberts S, Hunter R, The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of

           carcinoma of the cervix, Br J Cancer, 76(1997)1184-1190.
    87.  Björk-Eriksson T, West C, Karlsson E, Mercke C, Tumor radiosensitivity (SF2) is a prognostic factor for local control in head and neck cancers, Int J Rad

           Oncol Biol Phys, 46(2000)13-19.
    88.  Nordsmark M, Overgaard J, A confirmatory prognostic study on oxygenation status and loco-regional control in advanced head and neck squamous cell

           carcinoma treated by radiation therapy, Radiother Oncol, 57(2000)39-43.
    89.  Begg A C, Haustermans K, Hart A A, Dische S, Saunders M, Zackrisson B, Gustaffson H, Coucke P, Paschoud N, Hoyer M, Overgaard J, The value of

           pretreatment cell kinetic parameters as predictors for radiotherapy outcome in head and neck cancer: a multicenter analysis, Radiother Oncol,

           50(1999)13-23.
    90.  Matthews Q, Jirasek A, Lum J J, Brolo A G, Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed

           with Raman spectroscopy, Phys Med Biol, 56(2011)6839; doi.org/10.1088/0031-9155/56/21/006
    91.  Matthews Q, Brolo A G, Lum J, Duan X, Jirasek A, Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro, Phys Med

           Biol, 56(2010)19; doi.org/10.1088/0031-9155/56/1/002

    92.  Krishna C M, Sockalingum G D, Vadhiraja B M, Maheedhar K, Rao A C K, Rao L, Venteo L, Pluot M, Fernandes D J, Vidyasagar M S, Kartha V B, 

           Vibrational spectroscopy studies of formalin-fixed cervix tissues, Biopolymers, 85(2007)214-221.
    93.  Kaur E, Sahu A, Hole A R, Rajendra J, Chaubal R, Gardi N, Dutt A, Moiyadi A, Krishna C M, Dutt S, Unique spectral markers discern recurrent 

           Glioblastoma cells from heterogeneous parent population, Sci Rep, 6(2016)26538; doi: 10.1038/srep26538 (2016)

Raman Theranostics: An overview of Raman applications in therapeutic monitoring.pdf
Kshama Pansare and C Murali Krishna

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                    Vol. 29 Nos 3 & 4, 2020, 273-278


Origin of photoluminescence in carbon “Dots”

Avinash Kumar Singh† and Anindya Datta*
Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400 076. 

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications 

___________________________________________________________________________________________________________________________________

Using the method of dialysis a differentiation has been made between the photophysical properties of carbon dots and the photoluminescent impurities that are inherently associated with them owing to the various synthetic methodologies developed for the easy and inexpensive synthesis of these comparatively newer class of organic nanoparticles. © Anita Publications. All rights reserved.
Keywords: Dialysis, Photoluminescence, Photoluminescence lifetime, Carbon dots

References
1. Kroto H W, Heath J R,. O’Brien S C, Curl R F, Smalley R E, C60: Buckminsterfullerene, Nature, 318(1985)162-163.
2. Iijima S, Synthesis of Carbon Nanotubes, Nature, 354(1991)56-58.
3. Xu X, Ray R, Gu Y, Ploehn H J,Gearheart L, Raker K, Scrivens W A, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube 

    fragments, J Am Chem Soc, 126(2004)12736-12737. .
4. Bourlinos A B, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis E P, Photoluminescent Carbogenic Dots, Chem Mater, 20(2008)4539-4541
5. Bourlinos A B, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis E P, Surface functionalized carbogenic quantum dots, Small, 4(2008)455; 

    doi.org/10.1002/smll.200700578.
6. Hu S -L, Niu K -Y, Sun J, Yang J, Zhao N -Q, Du X -W, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation, J Mater Chem, 19(2009)484-

    488.
7.  Wang X, Cao L, Yang S -T, Lu F, Meziani M J, Tian L, Sun K, Bloodgood M A, Sun Y -P, Bandgap-Like strong fluorescence in functionalized carbon 

      nanoparticles, Angew Chem Int Ed Engl,49(2010)5310-5314; https://online library.wiley.com/doi/10.1002/anie.201000982.
8.  Zhao Q -L, Zhang Z -L, Huang B -H, Peng J, Zhang M, Pang D -W, Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation 

     of graphite, Chem Commun, 41(2008)5116-5118.

9.   Zhang X, Wang H, Wang H, Zhang Q, Xie J, Tian Y, Wang J, Xie Y, Single-Layered Graphitic-C3N4 Quantum Dots for Two-Photon Fluorescence Imaging of 

      Cellular Nucleus, Adv Mater, 26(2014)4438; doi.org/10.1002/adma.201400111.
10. Das T, Saikia B K, Dekaboruah, H P, Bordoloi M, Neog D, Bora J J, Lahkar J, Narzary B, Roy S, Ramaiah D J, Photochem Photobiol B: Biol, 195(2019)1; 

      doi.org/10.1016/j.jphotobiol.2019.04.004.
11. Sri S, Kumar R, Panda A K, Solanki P R, Highly biocompatible, fluorescence, and zwitterionic carbon dots as a novel approach for bioimaging applications in 

      cancerous cells, ACS Appl Mater Interfaces, 10(2018)37835; https://doi.org/10.1021/acsami.8b13217
12. Lu S, Xiao G, Sui L, Feng T, Yong X, Zhu S, Li B, Liu Z, Zou B, Jin M, Tse J S, Yan H, Yang B, Piezochromic carbon dots with two-photon fluorescence, 

      Angew Chem Int Ed, 56(2017)6187; doi.org/10.1002/anie.201700757
13. Liu M L, Chen B B, Li C M, Huang C Z, Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications, Green Chem, 

      21(2019)449-471.
14. Monte-Filho S S, Andrade S I E, Lima M B, Araujo M C U, Synthesis of highly fluorescent carbon dots from lemon and onion juices for determination of 

      riboflavin in multivitamin/mineral supplements, J Pharm Anal, 9(2019)209-216.
15. Fang Y, Guo S, Li D, Zhu C, Ren W, Dong S, Wang E, Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles, 

      ACS Nano, 6(2012)400-409.
16. Chun L, Liu W, Sun X, Pan W, Yu G, Wang J, Excitation dependent emission combined with different quenching manners supports carbon dots to achieve 

      multi-mode sensing, Sensors Actuat B-Chem, 263(2018)1-9.
17. Van Dam B, Nie H, Ju B, Marino E, Paulusse J M J, Schall P, Li M, Dohnalová K, Excitation-Dependent Photoluminescence from Single-Carbon Dots, Small, 

      13(2017)1702098; doi.org/10.1002/smll.201702098. .
18. LeCroy G E, Messina F, Sciortino A, Bunker C E, Wang P, Fernando K A S,Sun Y P, Characteristic excitation wavelength dependence of fluorescence 

      emissions in carbon “quantum” dots, J Phys Chem C, 121(2017)28180-28186.
19. Gharat P M, Chethodil J M, Srivastava A P, Praseetha P K, Pal H, Choudhury S Dutta, An insight into the molecular and surface state photoluminescence of 

      carbon dots revealed through solvent-induced modulations in their excitation wavelength dependent emission properties, Photochem Photobiol 

      Sci, 18(2019)110- 119.

20. Ding H, Yu S-B,Wei J-S, Xiong H-M, Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism, ACS Nano, 10(2016)484; 

      doi.org/10.1021/acsnano.5b05406.
21. Yan F, Sun Z, Zhang H, Sun X, Jiang Y, Bai Z, The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review, Microchim         Acta, 186(2019) 583; doi.org/10.1007/s00604-019-3688-y
22. Bhattacharya A, Chatterjee S, Prajapati R, Mukherjee T K, Size-dependent penetration of carbon dots inside the ferritin nanocages: evidence for the quantum 

      confinement effect in carbon dots, Phys Chem Chem Phys, 17(2015)12833-12840.

Origin of photoluminescence in carbon “Dots”.pdf
Avinash Kumar Singh and Anindya Datta

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                    Vol. 29 Nos 3 & 4, 2020, 279-286


Laser assisted cleaning: a comparative study of forward and reverse exposure


Anuja Mathai1,2, Padma Nilaya Jonnalagadda1,3, Bijoy Sugathan1,2,

Goutam Chakraborty1, Kulwant Singh4, V P Mahadevan Pillai2, and Dhruba J Biswas1,3

1Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai-400 085, India

2Department of Optoelectronics, Kerala University, Karyavattom, Thiruvananthapuram-695 581, India

3Homi Bhabha National Institute, Anushakti Nagar, Mumbai-400 094, India

4Material Science Division, Bhabha Atomic Research Centre, Mumbai-400 085, India

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

___________________________________________________________________________________________________________________________________

We report here on a comparative study of laser assisted forward and reverse cleaning techniques. Dye particulates simulated on LiF that is transparent to the incident laser radiation at 532 nm, served as the samples. Melting and partial ablation have been identified as the mechanisms of cleaning for low and high fluencies, respectively. Optical profilometric and microscopic probing of the laser exposed surface revealed a reduction in the height and increase in the base area of the contamination, respectively for both forward and reverse cleaning. The measurement of the total volume of contamination remnant on the exposed surface by employing the sensitive photo absorption technique established beyond doubt the decided advantage of reverse cleaning over forward cleaning. © Anita Publications. All rights reserved.

Keywords: Laser assisted surface cleaning, Reverse cleaning, Optical profilometry, Photo absorption, Dye particulate contamination.

References

  1.   Curran C, Lee J M, Watkins K G, Ultraviolet laser removal of small metallic particles from silicon wafers, Opt Laser Eng, 38(2002)405-415.

  2.   Morais P J, Gouveia H, Apostol I, Damian V, Garoi F, Iordache I, Bojan M, Apostol D, Campo J A R, Galli R, Laser beam in the service of paintings

        restoration, Rom Rep Phys, 62(2010)678-686.

  3.   Li L, The potential role of high power lasers in nuclear decommissioning, Nuclear Energy, 41(2002)397-407.

  4.   Kumar A, Bhatt R B, Afzal M, Panakkal J P, Biswas D J, Nilaya J P, Das A K, Laser-assisted decontamination of fuel pins for prototype fast breeder reactor,

        Nuclear Technology, 182(2013)242-247.

  5.   Tam C, Leung W P, Zapka W, Ziemlich W, Laser-cleaning techniques for removal of surface particulates, J Appl Phys, 71(1992)3515; doi.org/10.1063

        /1.350906.

  6.   Duocastella M, Florian C, Serra P, Diaspro A, Sub-wavelength laser nanopatterning using droplet lenses, Sci Rep, 5, 16199 (2015); doi: 10.1038/srep16199

        (2015).

  7.   Datta J, Verma R, Chowdhury D P, Nilaya J P, Biswas D J, Gantayet L M, A study of the surface erosion of zircaloy material during laser ablation process by

        thin layer activation technique, Radiochim Acta, 101(2013)129-132.

  8.   Ye Y, Yuan X, Xiang X, Dai W, Chen M, Miao X, Haibing L V, Wang H, Zheng W, Laser plasma shock wave cleaning of SiO2 particles on gold film, Opt

         Laser Eng, 49(2011)536-541.

  9.   Arkin W T (ed), New topics in Lasers and electrto-optics, (Nova Science Publisher, Ins, NY), 2006.

10.   Hagerman E, Shim J, Gupta V, Wu B, Evaluation of laser spallation as a technique for measurement of cell adhesion strength, J Biomed Mater Res A,

        82(2007)852-860.

11.   Nilaya J P, Kumar A, Raote P, Prasad M B S, Biswas D J, Study of laser assisted decontamination of commonly used clad surfaces, J Laser Appl,

        18(2006)294; doi.org/10.2351/1.2355520

12.   Nilaya J P, Kumar A, Raote P, Biswas D J, Laser-assisted decontamination—A wavelength dependent study, Appl Surf Sci, 254(2008)7377-7380.

13.   Nilaya J P, Prasad M B , Biswas D J, Observation of pitting due to field enhanced surface absorption during laser assisted cleaning of translucent particulates

        off metal surfaces, Appl Surf Sci, 263(2012)25-28.

14.   Datta J, Dasgupta S, Verma R, Chowdhury D P, Bijoy Sugathan, Nilaya J P, Biswas D J, Application of thin layer activation technique to study surface erosion

        of D9 stainless steel during laser ablation process, J Radioanal Nucl Chem, 308(2016)329-334.

15.   Bijoy S, Nilaya J P, Pillai V P M, Biswas D J, Studies on surface pitting during laser assisted removal of translucent ellipsoidal particulates from metallic

        substrates, Optics and Laser in Engg, 91(2017)24-29.

16.   Sugathan B, Nilaya J P, Pillai V P M, Biswas D J, Observation of particle assisted nano-ring, bump, pit structures on semiconductor substrates by dry laser

        exposure, A I P Adv, 8(2018)115110; doi.org/10.1063/1.5052053.

17.   Bloise F,  Barone A C, Vicari L, Dry laser cleaning of mechanically thin films, Appl Surf Sci, 238(2004)121-124.           

18.   Steen W M, Laser Material Processing, (London: Springer), 2003, pp 205-206.

19.   Nilaya J P, Biswas D J, Laser-assisted cleaning: Dominant role of surface, Pramana, 75(2010)1087-1097.

Laser assisted cleaning: a comparative study of forward and reverse exposure.pdf
Dhruba J Biswas and et al

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                    Vol. 29 Nos 3 & 4, 2020, 287-294


Dipolar small molecules at the air-water interface: A heterodyne-detected

vibrational sum frequency generation (HD-VSFG) study


Subhadip Roy and Jahur A Mondal*

Radiation & Photochemistry Division, Bhabha Atomic Research Centre,
Homi Bhabha National Institute, Mumbai 400 085, India

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

________________________________________________________________________________________________________________________

Air-water interface plays crucial roles in various interface-specific physicochemical processes. It is being increasingly evident that the change of water properties (at the interface) and the preferred orientation of molecules over there are fundamental to such interface-specific reactions. With the advent of nonlinear laser spectroscopy techniques, especially the sum frequency generation, one can detect such interfaces at molecular level precision without using external marker/probe. Here, we used one such surface-specific technique, heterodyne-detected vibrational sum frequency generation (HD-VSFG), to elucidate the effect of small dipolar molecules (e.g. dimethyl sulfoxide (DMSO), acetone, propylene carbonate (PC), urea and tetramethyl urea (TMU)) on the interfacial water. Our results reveal that the hydrophobic alkyl part of the solutes preferentially orient away from the aqueous phase (“methyl-up” orientation) and this preferred orientation affects the interfacial water as well. The interfacial water becomes increasingly hydrogen-up orientated (i.e., the water H’s are pointed towards the air) with rising hydrophobicity of the solutes. The H-up orientation of water is due to the hydration of the negative pole of the dipolar molecules that are exposed to the interfacial water. © Anita Publications. All rights reserved.

Keywords: Sum frequency generation, Heterodynedetection, Air-water interface, DMSO, Propylene carbonate, Urea

References
    1.    Murphy D M, Anderson J R, Quinn P K, McInnes L M, Brechtel F J, Kreidenweis S M, Middlebrook A M, Pósfai M, Thomson D S, Buseck P R, Influence

           of Sea-Salt on Aerosol Radiative Properties in the Southern Ocean Marine Boundary Layer, Nature, 392(1998)62-65.
    2.    Donaldson D J, George C, Sea-Surface Chemistry and its Impact on the Marine Boundary Layer, Environ Sci Technol, 46(2012)10385-10389.
    3.    Onsager L, Samaras N N T, The Surface Tension of Debye-Hückel Electrolytes, J Chem Phys, 2(1934)528-536.
    4.    Takahashi M, Ζ Potential of Microbubbles in Aqueous Solutions:  Electrical Properties of the Gas−Water Interface, J Phys Chem B, 109(2005)21858-21864.
    5.    Weissenborn P K, Pugh R J, Surface Tension and Bubble Coalescence Phenomena of Aqueous Solutions of Electrolytes, Langmuir, 11(1995)1422-1426.
    6.    Weissenborn P K, Pugh R J, Surface Tension of Aqueous Solutions of Electrolytes: Relationship with Ion Hydration, Oxygen Solubility, and Bubble

           Coalescence, J Colloid Interface Sci, 184(1996)550-563.
    7.    Jarvis N L, Scheiman M A, Surface Potentials of Aqueous Electrolyte Solutions, J Phys Chem, 72(1968)74-78.
    8.    Du Q, Superfine R, Freysz E, Shen Y R, Vibrational Spectroscopy of Water at the Vapor/Water Interface, Phys Rev Lett, 70(1993)2313-2316.
    9.    Nihonyanagi S, Yamaguchi S, Tahara T, Direct Evidence for Orientational Flip-Flop of Water Molecules at Charged Interfaces: A Heterodyne-Detected

           Vibrational Sum Frequency Generation Study, J Chem Phys, 130(2009)204704; doi.org/10.1063/1.3135147.
    10.  Tobias D J, Stern A C, Baer M D, Levin Y, Mundy C J, Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces, Annu

           Rev Phys Chem, 64(2013)339-359.
    11.  Sun L, Li X, Tu Y, Ågren H, Origin of Ion Selectivity at the Air/Water Interface, Phys Chem Chem Phys, 17(2015)4311-4318.
    12.  Liu D, Ma G, Levering L M, Allen H C, Vibrational Spectroscopy of Aqueous Sodium Halide Solutions and Air−Liquid Interfaces:  Observation of

           Increased Interfacial Depth, J Phys Chem B,108(2004)2252-2260.
    13.  Garrett B C, Ions at the Air/Water Interface, Science, 303(2004)1146-1147.
    14.  Tian C, Byrnes S J, Han H.-L, Shen Y R, Surface Propensities of Atmospherically Relevant Ions in Salt Solutions Revealed by Phase-Sensitive Sum

           Frequency Vibrational Spectroscopy, J Phys Chem Lett, 2(2011)1946-1949.
    15.  Saha S, Roy S, Mathi P, Mondal J A, Polyatomic Iodine Species at the Air–Water Interface and its Relevance to Atmospheric Iodine Chemistry: An Hd-

           Vsfg and Raman-Mcr Study, J Phys Chem A, 123(2019)2924-2934.
    16.  Tian C S, Shen Y R, Isotopic Dilution Study of the Water/Vapor Interface by Phase-Sensitive Sum-Frequency Vibrational Spectroscopy, J Am Chem Soc,

           131(2009)2790-2791.
    17.  Shen Y R, Phase-Sensitive Sum-Frequency Spectroscopy, Annu Rev Phys Chem, 64(2013)129-150.
    18.  Ahmed M, Namboodiri V, Mathi P, Singh A K, Mondal J A, How Osmolyte and Denaturant Affect Water at the Air-Water Interface and in Bulk: A 

           Heterodyne-Detected Vibrational Sum Frequency Generation (Hd-Vsfg) and Hydration Shell Spectroscopic Study, J Phys Chem C, 120(2016)10252-10260.
    19.  Ghosh N, Singh A K, Mondal J A, Ph Dependence of Interfacial Water in the Presence of Amino Acid Side Chains Revealed by Heterodyne-Detected

           Sum-Frequency Generation Spectroscopy, J Phys Chem C, 120(2016)23596-23603.
    20.  Roy S, Biswas B, Mondal J A, Singh P C, Heterodyne-Detected Vibrational Sum Frequency Generation Study of Air–Water–Fluoroalcohol Interface:

           Fluorocarbon Group-Induced Structural and Orientational Change of Interfacial Water, J Phys Chem C, 122(2018)26928-26933.
    21.  Nihonyanagi S, Kusaka R, Inoue K I, Adhikari A, Yamaguchi S, Tahara T, Accurate Determination of Complex χ(2) Spectrum of the Air/Water Interface, J

           Chem Phys, 143(2015)124707; doi.org/10.1063/1.4931485.
    22.  Yamaguchi S, Development of Single-Channel Heterodyne-Detected Sum Frequency Generation Spectroscopy and its Application to the Water/Vapor

           Interface, J Chem Phys, 143(2015)034202; doi.org/10.1063/1.4927067
    23.  Ji N, Ostroverkhov V, Chen C-Y, Shen Y.-R, Phase-Sensitive Sum-Frequency Vibrational Spectroscopy and its Application to Studies of Interfacial Alkyl

           Chains, J Am Chem. Soc, 129(2007)10056-10057.
    24.  Allen H C, Gragson D E, Richmond G L, Molecular Structure and Adsorption of Dimethyl Sulfoxide at the Surface of Aqueous Solutions, J Phys Chem B,

           103(1999)660-666.
    25.  Yeh Y L, Zhang C, Held H, Mebel A M, Wei X, Lin S H, Shen Y R, Structure of the Acetone Liquid/Vapor Interface, J Chem Phys, 114(2001)1837-1843.

Dipolar small molecules at the air-water interface: A heterodyne-detected vibrational sum frequency generation (HD-VSFG) study.pdf
Subhadip Roy and Jahur A Mondal

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                    Vol. 29 Nos 3 & 4, 2020, 295-312


Fluorescence Mueller matrix: A novel spectroscopic tool for the characterization of complex materials


S Chandel2, S Saha1 and N Ghosh1

1IndianInstitute of Science Education and Research, Kolkata,741246, W.B,India

2LPICM, EcolePolytechnique, Palaiseau,91120 France

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

___________________________________________________________________________________________________________________________________

Mueller matrix spectroscopy provides the full polarization response (spectral) of  the interacting medium. Conventionally Mueller matrix spectroscopy has been used mainly in case of elastic scattering. Fluorescence Mueller matrix spectroscopy even though having a long history has been forgotten and researchers haven’t explored it much. This article offers a fleeting overview of the following: theory of fluorescence Mueller matrix, the experimental system and various examples of applications of this unique technique. The presented applications span polymer chemistry, medical diagnosis, supramolecular chemistry etc. This article also highlights the uniqueness and high potential of this technique to be used for various applications.   © Anita Publications. All rights reserved.

Keywords: Pre-cancer, Mueller Matrix, Fluorescence, Tissues, Polarized light, Supramolecular structure

References

  1.   Kliger D S, Lewis J W, Polarized light in optics and spectroscopy, (Elsevier), 2012.

  2.   Goldstein D H, Polarized Light, (CRC Press,Taylor & Francis Group, Boca Raton, London, New York), 2016.

  3.   Gupta S D, Ghosh N, Banerjee A, Wave Optics: Basic Concepts and Contemporary Trends, (CRC Press, Taylor & Francis Group, Boca Raton, London, New 

        York), 2015.

  4.   Bickel W S, Bailey W M, Stokes vectors, Mueller matrices, and polarized scattered light, Am J Phys, 53,(1985)468-478.

  5.   Chipman R A, Polarimetry, Handbook of Optics, Vol II, chapter 22, (McGraw-Hill, INC), 1995, pp 22.1-22.37.

  6.   Lakowicz J R, Principles of fluorescence spectroscopy, (Springer Science & Business Media), 2013.

  7.   Ramanujam N, Fluorescence spectroscopy of neoplastic and non-neoplastic tissues, Neoplasia, 2(2000)89-117.

  8.   Karoui R, Blecker C, Fluorescence Spectroscopy Measurement for Quality Assessment of Food Systems—a Review, Food Bioprocess Technol, 4(2011)364-

        386.

  9.   Wagnieres G A, Star W M, Wilson B C, In vivo fluorescence spectroscopy and imaging for oncological applications, J Photochem Photobio, 68(1998)603-

         632.

10.   Gomes A J, Lunardi C N, Rocha F S, Patience G S, Experimental methods in chemical engineering: Fluorescence emission spectroscopy, Can J Chem Eng

        97(2019)2168-2175.                             

11.   Romani A, Clementi C,MilianiC, Favaro G, Fluorescence Spectroscopy: A Powerful Technique for the Noninvasive  Characterization of Artwork, Acc Chem 

        Res, 43(2010)837-846.

12.   Drummen G P C, Fluorescent probes and fluorescence (microscopy) techniques — Illuminating biological and biomedical research, Molecules

        17(2012)14067-14090.

13.   Soleillet P, Sur les paramètres caractérisant la polarisation partielle de la lumière dans les phénomènes de fluorescence, Ann Phys, 10(1929)23-97; 

        doi.10.1051/anphys/192910120023. 

14.   Perrin F, Polarization of light scattered by isotropic opalescent media, J Chem Phys, 10(1942)415; doi.org/10.1063/1.1723743.

 15.  Perrin F. Polarisation de la lumière diffusée par les milieux isotropes troubles, J Phys Radium, 3(1942)41-51.

16.   Mueller H, Report no. 2 of OSR project OEMsr-576, (1943).

17.   ShindoY, Oda Y,  Mueller matrix approach to fluorescence spectroscopy. Part I: Mueller matrix expressions for fluorescent samples and their application to 

        problems of circularly polarized emission spectroscopy,  Appl Spectrosc, 46(1992)1251-1259.

18.   Arteaga O, Nichols S, Kahr B, Mueller matrices in fluorescence scattering, Opt Lett, 37(2012)2835-2837.

19.   Jagtap J, Chandel S, Das N, Soni J, Chatterjee S, Pradhan A , Ghosh N, Quantitative Mueller matrix fluorescence spectroscopy for precancer detection, Opt 

        Lett, 39(2014) 243-246.                        

20.   Mazumder N, Qiu J, Kao F J, Diaspro A, Mueller matrix signature in advanced fluorescence microscopy imaging, J Opt, 19(2017)025301; 

        doi.org/10.1088/2040-8986/aa5114.                                                                            

21.   Saha S, Soni J, Chandel S, Ghosh N, Kumar U, Probing intrinsic anisotropies of fluorescence: Mueller matrix approach, J Biomed Opt, 20(2015)085005; 

        doi.org/10.1117/1.JBO.20.8.085005.                                           

22.   Arteaga O, Caurel E G, Ossikovski R, Anisotropy coefficients of a Mueller matrix, J Opt Soc Am A, 28(2011) 548-553.

23.   Soni J, Purwar H, Lakhotia H, Chandel S, Banerjee C, Kumar U, Nirmalya Ghosh N, Quantitative fluorescence and elastic scattering tissue polarimetry using 

        an Eigenvalue calibrated spectroscopic Mueller matrix system, Opt express, 21(2013)15475-15489.                                                                            

24.   Purwar H, Soni J, Lakhotia H, Chandel S, Banerjee C, Ghosh N, Development and eigenvalue calibration of an automated spectral Mueller matrix system for 

        biomedical polarimetry, Biomedical Applications of Light Scattering, Proc SPIE, 8230, 823019; doi: 10.1117/12.906668.

25.   Baba J S, Chung J-R, DeLaughter A H, Cameron B D, Cote ́ J L, Development and calibration of an automated Mueller matrix polarization imaging system,

        Biomed Opt, 7(2002)341-349.                                       

26.   Compain E, Poirier S, Drevillon B, General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix 

        ellipsometers, Appl opt, 38(1999)3490-3502.

27.   Satapathi S, Soni J, Ghosh N, Fluorescent Mueller matrix analysis of a highly scattering turbid media,  Appl Phys Lett, 104(2014)131902; 

        doi.org/10.1063/1.4869475.

28.   Maji K, Saha S, Dey R, Ghosh N, Haldar D, Mueller matrix fluorescence spectroscopy for probing self-assembled peptide-based hybrid supramolecular 

        structure and orientation, J Phys Chem, 121(2017)19519-19529.

29.   Kumar R, Ray S K, Mukherjee S, Saha S, Bag A, Ghorai P K, Ghosh N, Shunmugam R "Dial-In” Emission from a Unique Flexible Material  with 

        Polarization Tuneable Spectral Intensity, Chem Eur, 25(2019)13514-13522.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                    Vol. 29 Nos 3 & 4, 2020, 313-320


Femtosecond pump-probe spectroscopy for remote sensing of liquid-liquid interface

 

D Goswami*, D K Das and K Makhal

Department of Chemistry

Indian Institute of Technology Kanpur-208016, India

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

________________________________________________________________________________________________________________________

We  report  results  establishing that detection  of  the  liquid-liquid  interface  is  possible  through  femtosecond  pump-probe spectroscopy. In particular, we use femtosecond laser pulses to pump and probe the dynamics of infra-red dye molecules in a liquid pair that can form an interface. We demonstrate that an interface formation can be detected from such femtosecond dynamical study of the dye molecule. The importance of obtaining the molecular description on the relation between the dynamics of solute molecules and solute-solvent interactions arises from the fact that the dynamic and static properties of dye molecules are strongly affected by the surrounding solvent molecules. © Anita Publications. All rights reserved.

Keywords: Femtosecond pump-probe spectroscopy, Degenerate pump-probe spectroscopy, Liquid-liquid interface, Solute-solvent interactions; Transport across interface.

References 

1.   Stock G, Domke W, Detection of Ultrafast Molecular-Excited-State Dynamics with Time and Frequency-Resolved Pump-Probe Spectroscopy, Phys Rev A

      45(1992)3032-3040.

2.   Goswami T, Kumar S K K, Dutta A, Goswami D, Probing the ultrafast solution dynamics of a cyanine dye in an organic solvent interfaced with water, J Phys 

      Chem B, 113(2009)16332-16336.

3.   Das  D  K,  Makhal  D,  Bandyopadhyay S N, Goswami D, Direct  Observation  of  Coherent Oscillations in Solution due to Microheterogeneous Environment,

      Sci Rep, 4(2014)6097-7002.

4.   van der Veen R M, Cannizzo A, van Mourik F, Vlček A (Jr),  Chergui M, Vibrational Relaxation and Intersystem Crossing of Binuclear Metal Complexes in 

      Solution, J Am Chem Soc, 133(2011)305-315.

5.   Zhang Y, Dood J, Beckstead A, Chen J, Li X-B, Burrows C J, Lu Z, Matsika S, Kohler B, Ultrafast excited-State dynamics and vibrational cooling of 8- Oxo-

      7,8-dihydro-2′-deoxyguanosine in D2O, J Phys Chem A, 117(2013) 12851-12857.

6.   Richert S, Fedoseeva M, Vauthey E, Ultrafast Photoinduced Dynamics at Air/Liquid and Liquid/Liquid Interfaces, J Phys Chem Lett, 3(2012)1635-1642.            7.   Mizutani Y, KitagawaT, Direct observation of cooling of heme upon photodissociation of carbonmonoxy myoglobin, Science, 278(1997)443-446.

8.   Middleton C T, Cohen B, Kohler B, Solvent and solvent isotope effects on the vibrational cooling dynamics of a DNA base berivative, J Phys Chem A,

      111(2007)10460-10467.

9.   Braem O, Penfold T J, Cannizzo A, Chergui M A, Femtosecond fluorescence study of vibrational relaxation and cooling dynamics of UV dyes, Phys Chem 

      Chem Phys, 14(2012)3513-3519.

10. Zhang Y, Chen J, Kohler B, Hydrogen Bond Donors Accelerate Vibrational Cooling of Hot Purine Derivatives in Heavy Water, J Phys Chem A

      117(2013)6771-6780.

11. Pullen S H, Anderson N A, Walker L A (II), Sension R J, The ultrafast ground and excited-state dynamics of cis-hexatriene in cyclohexane, J Chem Phys

      107(1997)4985-4993.

12. Nagasawa Y, Ando Y, Kataoka D, Matsuda H, Miyasaka H, Okada T, Ultrafast Excited-State Deactivation of Triphenylmethane Dyes, J Phys Chem A,

      106(2002)2024-2035.

13. Maruyama Y, Magnin O, Satozono H, Ishikawa M, Ground- and Excited-State Isomerization of Triphenylmethane Dyes in the Femtosecond Regime, J Phys 

      Chem A, 103(1999)5629-5635.

14. Notman R, Noro M, O’Malley B, Anwar J, Molecular Basis for Dimethylsulfoxide (DMSO) Action on Lipid Membranes, J Am Chem Soc,

      128(2006)13982-13983.

Femtosecond pump-probe spectroscopy for remote sensing of liquid-liquid interface.pdf
D Goswami, D K Das and K Makhal

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                      Vol. 29 Nos 3 & 4, 2020, 321-328


IR-UV double resonance spectroscopy of phenylacetylene-water complex revisited: observation of 

cyclic and π complexes

 

S I Mondal, A Dey, A Kundu and G N Patwari

Department of Chemistry,

Indian Institute for Technology Bombay, Mumbai, India

 This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

___________________________________________________________________________________________________________________________________

The binary complex between phenylacetylene and water is investigated using 1C-R2PI and IDIR spectroscopic techniques combined with high-level ab initio calculations. A cyclic complex between phenylacetylene and water incorporating Cbz–H∙∙∙O and O–H∙∙∙πac hydrogen bonds was reported earlier. A new phenylacetylene-water complex that incorporates a single O–H∙∙∙πbz hydrogen bond is reported here. Stabilization energy calculated at CCSD(T)/CBS//MP2/aug-cc-pVDZ level of theory indicates that the new complex is local minima which is about 1.5 kJ mol-1 higher in energy than the earlier observed global minimum. © Anita Publications. All rights reserved.

Keywords: Double resonance spectroscopy, Mass resolved IR spectroscopy, Ab-initio calculations                                   

References

  1.   Wang W, Hobza P, Theoretical Study on the Complexes of Benzene with Isoelectronic Nitrogen-Containing Heterocycles, ChemPhysChem, 9(2008)1003-

        1009.

  2.   Piton M, Neogra P, Jurec J R P, Urban M, Hobza P, Benzene dimer: high-level wave function and density functional theory calculations, J Chem Theory 

        Comput, 4(2008)1829-1834.

  3.   Suzuki S, Green P G, Bumgarner R E, Dasgupta S, Goddard W A, Blake G A, Benzene forms hydrogen bonds with water, Science, 257(1992)942-945.

  4.   Gutowsky H S, Emilsson T, Arunan E, Low-J rotational spectra, internal rotation, and structures of several benzene–water dimers, J Chem Phys

        99(1993)4883-4893.

  5.   Erlekam U, Frankowski M, Meijer G, von Helden G, An experimental value for the B1uC–H stretch mode in benzene,  J Chem Phys, 124(2006)171101; 

        doi.org/10.1063/1.2198828.

  6.   Chandrasekaran V, Biennier L, Arunan E, Talbi D, Georges R, Direct infrared absorption spectroscopy of benzene dimer, J Phys Chem A, 115(2011)11263-

        11268.

  7.   Schnell M, Erlekam U, Bunker P R, Von Helden G, Grabow J U, Meijer G, van der Avoird A, Structure of the Benzene Dimer—Governed by Dynamics,

        Angew Chemie - Int Ed, 52(2013)5180-5183.

  8.   Maity S, Guin M, Singh P C, Patwari G N, Phenylacetylene: a hydrogen bonding chameleon, ChemPhysChem, 12(2011)26-46.

  9.   Karir G,  Lgttschwager N O B, Suhm M A, Phenylacetylene as a gas phase sliding balance for solvating alcohols,   Phys Chem Chem Phys, 21(2019)7831-

        7840.

10.   Singh P C, Bandyopadhyay B, Patwari G N, Structure of the phenylacetylene− water complex as revealed by infrared-ultraviolet double resonance 

        spectroscopy, J Phys Chem A, 112(2008)3360-3363.

11.   Goswami M, Arunan E, Microwave spectroscopic and theoretical studies on the phenylacetylene...H2O complex: C–H...O and O–H...π hydrogen bonds as 

        equal partners, Phys Chem Chem Phys, 13(2011)14153-14162.

12.   Karir G, Viswanathan K S, Phenylacetylene–water complex: Is it n...σ or H...π in the matrix, J Mol Struct, 1107(2016)145-156.

13.   Singh P C, Patwari G N, Infrared-optical double resonance spectroscopy: a selective and sensitive tool to investigate structures of molecular clusters in the gas 

        phase, Curr Sci, 95(2008)469-474.

14.   Wiley W C, McLaren I H, Rev. Sci. Instrum. 26 (1955) 1150–1157.

15.   Tanabe S, Ebata T, Fujii M, Mikami N, OH stretching vibrations of phenol—(H2O) n (n= 1–3) complexes observed by IR-UV double-resonance spectroscopy,

        Chem Phys Lett, 215(1993)347-352.

16.   Page R H, Shen Y R, Lee Y T, Infrared–ultraviolet double resonance studies of benzene molecules in a supersonic beam, J Chem Phys, 88(1988)5362-5376.

17.   Frisch M J, Trucks G W, Schlegel H B, et , Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, X Li, Caricato M, 

        Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, 

        Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, VG Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, 

        Toyota K,  Fukuda R, Hasegawa J, M Ishida, T Nakajima, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A (Jr), Peralta J E, Ogliaro F, 

        Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S

        S,  Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J, Gaussian 16, 

        Revision B.01, Gaussian, Inc., Wallingford CT (2016).

18.   Jurečka P, Hobza P, On the convergence of the (ΔECCSD(T)−ΔEMP2) term for complexes with multiple H-bonds, Chem Phys Lett, 365(2002)89-94.

19.   Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson A K, Basis-set convergence in correlated calculations on Ne, N2, and H2O,  Chem 

        Phys Lett, 286(1998)243-252.

20.   Min S K, Lee E C, Lee H M, Kim D Y, Kim D, Kim K S, Complete basis set limit of Ab initio binding energies and geometrical parameters for various typical 

        types of complexes, J Comput Chem, 29(2008)1208-1221.

21.   Dennington T, Keith T, Millam J, GaussView Version 5, Semichem Inc., Shawnee Mission KS, 2009.

22.   Szalewicz K,Symmetry-adapted perturbation theory of intermolecular forces , Wiley Interdiscip Rev Comput Mol Sci, 2(2012)254-272; 

        doi.org/10.1002/wcms.86

23.   Hohenstein E G, Sherrill C D, Density fitting and Cholesky decomposition approximations in symmetry-adapted perturbation theory: Implementation and 

        application to probe the nature of π-π interactions in linear acenes, J Chem Phys, 132(2010)184111; doi: 10.1063/1.3426316.

24.   Turney J M, Simmonett A C, Parrish R M, Hohenstein E G, Evangelista F A, Fermann J T, Mintz B J, Burns L A, Wilke J J, Abrams M L, Russ N J, 

        Leininger M L, Janssen C L, Seidl E T, Allen W D, Schaefer H F, King R A, Valeev E F, Sherrill C D, Crawford T D, Psi4: an open-source ab initio electronic 

        structure program, Wiley InterdiscipRevComput Mol Sci, 2(2012)556-565; doi.org/10.1002/wcms.93

25.   Stearns J A, Zwier T S, Infrared and Ultraviolet Spectroscopy of Jet-Cooled ortho-, meta-, and para-Diethynylbenzene, J Phys Chem A, 107(2003)10717-

        10724.

26.   Singh P C, Maity S, Patwari G N, Water complexes of styrene and 4-fluorostyrene: A combined electronic, vibrational spectroscopic and ab-initio 

        investigation, J Phys Chem A, 112(2008)9702-9707.

27.   Guin M, Maity S, Patwari G N, Infrared-optical double resonance spectroscopic measurements on 2-(2′-Pyridyl) benzimidazole and its hydrogen bonded 

        complexes with water and methanol, J Phys Chem A, 114(2010)8323-8330.

28.   Goswami M, Arunan E,, Microwave spectrum and structure of C6H5CCH...H2S complex, J Mol Spectrosc, 268(2011)147-156.

IR-UV double resonance spectroscopy of phenylacetylene-water complex revisited: observation of cyclic and π complexes.pdf
S I Mondal, A Dey, A Kundu and G N Patwari

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                      Vol. 29 Nos 3 & 4, 2020, 329-336

 

Determination of diffusion coefficients of photosensitizers in human oral mucosa


A A Selifonov1.2*, O Yu Aleshkina2, T M Zagorovskaya2, O V Syrova2 and V V Tuchin1,3,4,5

1Department of Optics and Biophotonics, Saratov State University, Saratov 410012, Russia

2Saratov State Medical University, Saratov 410012, Russia

3Laboratory of Laser Diagnostics of Technical and Living Systems,
Institute of Precision Mechanics and Control of the RAS, Saratov 410028, Russia

4Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk 634050, Russia

5Laboratory of Molecular Imaging, Bach Institute of Biochemistry, Research Center of Biotechnology of the RAS, Moscow 119071, Russia

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics  with  biomedical applications 

___________________________________________________________________________________________________________________________________

This work is devoted to determining the effective diffusion coefficient of methylene blue and pharmaceutical based on acridine dye (rivanol) in the tissue of the human oral mucosa in vitro. Optical diffuse reflection spectroscopy, a modified Bouguer-Lambert-Beer light attenuation law, and the model of free diffusion were used in the study. The effective diffusion coefficients were determined as DMB=1.26 ± 0.46)·10–7 cm2/s for methylene blue and DR=(3.01 ± 0.82)·10–7 cm2/s for rivanol. © Anita Publications. All rights reserved.

Keywords: Diffusion coefficient, Methylene blue, Acridine dye

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                      Vol. 29 Nos 3 & 4, 2020, 339-345


Enhancement of the rivanol antibacterial properties under UV irradiation


A A Selifonov1, 2, Yu S Skibina1, O G Shapoval2, N A Mikerov2, D A Zimnyakov3,4 and V V Tuchin1,4,5,6

1Department of Optics and Biophotonics, Saratov State University, Saratov 410012, Russia

2Saratov State Medical University, Saratov 410012, Russia

3Saratov State Technical University, Saratov 410054, Russia

4Laboratory of Laser Diagnostics of Technical and Living Systems,
Institute of Precision Mechanics and Control of the RAS, Saratov 410028, Russia

5Interdisciplinary Laboratory of Biophotonics, Tomsk State University, Tomsk 634050, Russia

6Laboratory of Femto Medicine, ITMO University, Saint Petersburg 197101, Russia

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

___________________________________________________________________________________________________________________________________

In this work,  studies on antimicrobial activity of rivanol (ethacridine lactate) aqueous solutions of various concentrations under the influence of laser (405 nm) and ultraviolet incoherent radiation on a strain of Staphylococcus aureus FDA 209P (in vitro) were conducted in context of treatment of dental diseases. A significant photosensitizing effect of rivanol was revealed upon irradiation of standard S. aureus FDA 209P strains with an ultraviolet light source with a more than two-fold increase in rivanol concentration at 0.0025% -0.0050% and more than three-fold at a concentration of 0.01% - 0.05%. © Anita Publications. All rights reserved.

Keywords: Antimicrobial activity, Photosensitizing effect, Photodynamic effect, Acridine dyes.

References

  1.   Shah S, Paediatric dentistry- novel evolvement, Annals of Medicine and Surgery, 25(2018)21-29.

  2.   Çolak H,  Dülgergil Ç T,  Dalli M, Early childhood caries update: a review of causes, diagnoses, and treatments, J Nat Sci Biol Med, 4(2013)29-38.

  3.   Walsh T, Oliveira-Neto J M, Moore D, Chlorhexidine treatment for the prevention of dental caries in children and adolescents, Cochrane Database of 

        Systematic Reviews, 4 (2015), Art. No.: CD008457; doi.org/10.1002/14651858.

  4.   Krasnovsky A A, Benditkis A S, Kozlov A S, Kinetic Measurements of Singlet Oxygen Phosphorescence in Hydrogen-Free Solvents by Time-Resolved 

        Photon Counting, Biochemistry (Moscow), 84(2019)153-163.

  5.   Pierce A, Singh S, Lee J, Grant C, Cruz de Jesus V, Schroth R J, The Burden of Early Childhood Caries in Canadian Children and Associated Risk Factors,

        Front Public Health, 7(2019)328; doi. 10.3389/fpubh.2019.00328.

  6.   Semyachkina-Glushkovskaya O V,  Sokolovski S G,  Goltsov A,  Gekaluyk A S, Saranceva E I,  Bragina O A, Tuchin V V, Rafailov E U, Laser-induced 

        generation of singlet oxygen and its role in the cerebrovascular physiology, Progress in Quantum Electronics, 55(2017)112-128.

  7.   Genina E A, Titorenko V A, Belikov A V, Bashkatov A N, Tuchin V V, Adjunctive dental therapy via tooth plaque reduction and gingivitis treatment by blue 

        light-emitting diodes tooth brushing, J Biomed Opt, 20(2015)128004; doi.org/10.1117/1.JBO.20.12.128004.

  8.   Hamblin M R, Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation, Photochem Photobiol,  94(2018)199; doi.org/10.1111/php.12864.

  9.   Tuchin V V, Tissue optics and photonics: Light-tissue interaction II, J Biomed Photonics & Eng, 2(2016); doi. 10.18287/JBPE 16.02.030201.        

10.   Genina E A, Titorenko V A, Simonenko G V, Bashkatov A N, Shub G M, Lepilin A B, Tuchin VV, Yaroslavsky I V, Altshuler G B, Phototherapy of 

        gingivitis: pilot clinical study, Journal of Innovative Optical Health Sciences, 4(2011)437-446.

11.   Selifonov A  A, Shapoval O G, Yuvchenko S A, Zimnyakov D A, Mikerov A N, Tuchin V V, Progress in Biomedical Optics and Imaging - Proc SPIE, 11065 

        (2019); doi: 10.1117/12.2532343.

12.   Byvaltsev V A, Bardonova L A,  Onaka N R, Polkin R A, Ochkal S V,  Shepelev V V,  Aliyev M A, Acridine orange: A review of novel applications for 

        surgical cancer imaging and therapy, Front Oncol, 9(2019)925; doi. 10.3389/fonc.2019.00925. 

13.   Egorova A V, Brill G E, Bugaeva I O, Tuchina E S, Nechaeva O V, Фотодинамическое воздействие лазерного излучения красной области спектра на 

        рост штаммов Staphylococcus aureus с использованием фотодитазина, Izv Saratov Univ (N.S.), Ser Chemistry Biology Ecology, 17(2017)428 (in 

        Russian); doi. 10.18500/1816-9775-2017-17-4-428-431.

14.   Tuchina E S, Tuchin V V, Khlebtsov B N, Khlebtsov N G, Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on 

        Staphylococcus aureus induced by IR laser radiation, Quantum Electron, 41(2011)354; doi.org/10.1070/QE2011v041n04ABEH014595

15.   Selifonov A A, Shapoval O G, Mikerov A N, Tuchin V V, Determination of the Diffusion Coefficient of Methylene Blue Solutions in Dentin of a Human 

        Tooth using Reflectance Spectroscopy and Their Antibacterial Activity during Laser Exposure, Opt Spectrosc, 126(2019)758-768.

16.   Bjurshammar N, Malmqvist S, Johannsen G, Boström E, Fyrestam J, Östman C, Johannsen A, Effects of Adjunctive Daily Blue Light Toothbrushing on 

        Dental Plaque and Gingival Inflammation—A Randomized Controlled Study, Open J Stomatology, 8(2018)287; doi.org/10.4236/ojst.2018.810027.

17.   Zhang Y, Zhu Y, Chen J, Wang Y, Sherwood M E, Antimicrobial blue light inactivation of Candida albicans: In vitro and in vivo studies, Virulence

        7(2016)536-545.

18.   Ramakrishnan P, Maclean M, MacGregor S J, Anderson J G, Grant M H, Cytotoxic responses to 405 nm light exposure in mammalian and bacterial cells: 

        involvement of reactive oxygen species, Toxicology in Vitro, 33(2016)54-62.

19.   George S, Kishen A, Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal 

        disinfection, J Biomed Opt, 12(2007)034029; doi.org/10.1117/1.2745982.

20.   Cromer A H, Física para ciencias de la vida (in Spanish) (Reverté ediciones ed), 1996, р135.

21.   Genina E A, Bashkatov A N, Chikina E E, Tuchin V V, Diffusion of methylene blue in the human maxillary sinus mucosa, Biofizika, 52(2007)56; PMID: 

        18225663.

22.   Tuchin V V, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd edn, (PM 254, SPIE Press, Bellingham, WA), 2015, р 988.

23.   Carrel M, Schweizer M L, Sarrazin M V, Smith T C, Residential Proximity to Large Numbers of Swine in Feeding O Operations Is Associated with Increased 

        Risk of Methicillin-Resistant Staphylococcus aureus Colonization at Time of Hospital Admission in Rural Iowa Veterans, Infect Control Hosp Epidemiol

        35(2014)190-192.

24.   Kuhlmann F M,  Fleckenstein J M, Antiparasitic Agents, in  Infectious Diseases,4th edn, Elsevier:  Amsterdam,The Netherlands, 2017; pp. 1345–1372.

25.   Pelley John W, Protein Synthesis and Degradation. in Elsevier’s Integrated Review Biochemistry, 2nd edn, 2012, р356.

26.   Osman H, Elsahy D, Saadatzadeh M R, Pollok K E, Yocom S, Hattab E M, Georges J, Cohen-Gadol A A, Acridine orange as a novel photosensitizer for 

        photodynamic therapy in glioblastoma, World Neurosurg, 114(2018)e1310-e1315.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                      Vol. 29 Nos 3 & 4, 2020, 347-354


Micro-Raman spectroscopy of live cells: Red Blood Cell under externally induced stress


J Lukose1, Mithun N1, G Mohan2, S Shastry2 and S Chidangil1

1Centre of Excellence for Biophotonics,  Department of Atomic and Molecular Physics,
Manipal Academy of Higher Education
,  Manipal-576 104, India

2Department of Immunohematology and Blood Transfusion,  Kasturba Medical College, Manipal,
Manipal Academy of Higher Education, Manipal-576 104
,  India

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

___________________________________________________________________________________________________________________________________

Micro-Raman spectroscopy has been a widely used spectroscopic tool for studying tissues, body fluids and live cells e.g. blood components. Raman spectroscopy integrated with optical tweezers can be exploited for carrying out systematic investigations on single live blood cells. The present work deals with probing of stress impact generated by exogenous factors on human live red blood cells using the above technique. The primary focus was to explore the variations in methine deformation and spin marker region of the micro-Raman spectrum to understand the haemoglobin oxygenation state of human red blood cells under various stress factors. This study showed a transition from oxygenated to deoxygenated haemoglobin states in red blood cells under the influence of alcohol, normal saline and heme aggregation in near-infrared radiation. © Anita Publications. All rights reserved.

Keywords: Micro-Raman spectroscopy, Optical Trap,RBC, Hemoglobin, Oxygenation

References

  1.   Virkler K, Lednev I K, Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime 

        scene, Forensic Sci Int, 188(2009)1-17.

  2.   Shaw R A, Mantsch H H, Infrared Spectroscopy of Biological Fluids in Clinical and Diagnostic Analysis, Encyclopedia of Analytical Chemistry: 

        Applications, Theory and Instrumentation, 2008: doi.10.1002/9780470027318.

  3.   Bunaciu A  A, Hoang V  D, Aboul-Enein H  Y, Applications of FT-IR Spectrophotometry in Cancer Diagnostics, Crit Rev Anal Chem, 45(2015)156-

        165.                                                                                    

  4.   Parachalil D R, Bruno C, Bonnier F, Blasco H, Chourpa I, Baker M J, McIntyre J, Byrne H J, Analysis of bodily fluids using vibrational spectroscopy: a direct 

        comparison of Raman scattering and infrared absorption techniques for the case of glucose in blood serum, Analyst, 144(2019)3334-3346.

  5.   Bonnier F, Petitjean F, Baker M J, J Byrne H J, Improved protocols for vibrational spectroscopic analysis of body fluids, J Biophoton, 7(2014)167-179.

  6.   Kong K, Kendall C, Stone N, Notingher I, Raman spectroscopy for medical diagnostics—From in-vitro biofluid assays to in-vivo cancer detection, Adv Drug 

        Deliv Rev, 89(2015)121-134.

  7.   Krafft C, Steiner G, Beleites C, Salzer R, Disease recognition by infrared and Raman spectroscopy, J Biophoton, 2(2009)13-28.

  8.   Virkler K, Lednev I K, Raman spectroscopic signature of blood and its potential application to forensic body fluid identification, Anal Bioanal Chem

        396(2010)525-534.

  9.   Li X, Yang T, Li S, Discrimination of serum Raman spectroscopy between normal and colorectal cancer using selected parameters and regression-

        discriminant analysis, Appl Opt, 51(2012)5038-5043.

10.   Atkins C G, Buckley K, Blades M W, Turner R F B, Raman Spectroscopy of Blood and Blood Components, Appl Spectrosc, 71(2017)767-793.

11.   Pichardo-Molina J L, Frausto-Reyes C, Barbosa-García O, Huerta-Franco R, González-Trujillo J L, Ramírez-Alvarado C A, Gutiérrez-Juárez G, C Medina-

        Gutiérrez C, Raman spectroscopy and multivariate analysis of serumsamples from breast cancer patients, Lasers Med Sci, 22(2007)229-236. 

12.   Parlatan U, Inanc M T, Ozgor B Y, Oral E, Bastu E, Unlu M B, Basar G, Raman spectroscopy as a non-invasive diagnostic technique for endometriosis, Sci 

        Rep, 9(2019)19795; doi.org/10.1038/s41598-019-56308-y.

13.   Bilal M, Saleem M, Amanat S T, Shakoor H A, Rashid R, Mahmood A, Mushtaq Ahmed M, Optical diagnosis of malaria infection in human plasma using 

        Raman spectroscopy, J Biomed Opt, 20 (2015)017002; doi.org/10.1117/1.JBO.20.1.017002. 

14.   Xie C, Goodman C, Dinno M A, Li Y-Q, Real-time Raman spectroscopy of optically trapped living cells and organelles, Opt Express, 12(2004)6208-6214.

15.   Ashkin A, Dziedzic J M, Yamane T, Optical trapping and manipulation of single cells using infrared laser beams, Nature, 330(1987)769-771.  

16.   Ashkin A, Dziedzic J M, Optical trapping and manipulation of viruses and bacteria, Science, 235(1987)1517-1520.

17.   Zhang H, Liu K-K, Review: Optical tweezers for single cells, J R Soc Interface, 5(2008)671; 

        doi.org/10.1098/rsif.2008.0052.                                                                                                                           

18.   Jia W, Chen P, Chen W, Li Y, Raman characterizations of red blood cells with β-thalassemia using laser tweezers Raman spectroscopy, Medicine, 97(2018): 

        e12611; doi: 10.1097/MD.0000000000012611.

19.   Liu R, Mao Z, Matthews D L, Li C-S, Chan J W, Satake N, Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: 

        application for sickle cell disease, Exp Hematol, 41(2013)656-661.

20.   Barkur S, Bankapur A, Pradhan M, Chidangil S, Mathur D, Ladiwala U, Probing differentiation in cancer cell lines by single-cell micro-Raman spectroscopy,

        J Biomed Opt, 20(2015)085001; doi.org/10.1117/1.JBO.20.8.085001

21.   Boyaci I H, Genis H E, Guven B, Tamer U, Alper N, A novel method for quantification of ethanol and methanol in distilled alcoholic beverages using Raman 

        spectroscopy, J Raman Spectrosc,  43(2012)1171-1176.

22.   Bayden R Wood, Don McNaughton, Resonance Raman Spectroscopy of Erythrocytes, Handbook of Vibrational Spectroscopy, (John Wiley & Sons), 

        2006.                

23.   Atkins C G, Schulze H G, Devine D V, Blades M W, Turner R F B, Using Raman spectroscopy to assess hemoglobin oxygenation in red blood cell 

        concentrate: an objective proxy for morphological index to gauge the quality of stored blood?, Analyst, 142 (2017)2199-2210. 

24.   Atkins C G,  Buckley K, Chen D, Schulze H G, Devine D V, Michael W Blades M W, Turner R F B, Raman spectroscopy as a novel tool for monitoring 

        biochemical changes and inter-donor variability in stored red blood cell units, Analyst, 141(2016)3319-3327.

25.   Rao S, Bálint Š, Cossins B, Guallar V, Petrov D, Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,

        Biophys J, 96(2009)209-216.          

26.   Duke T, Mathur A, Kukuruzovic R H, McGuigan M, Hypotonic vs isotonic saline solutions for intravenous fluid management of acute infections, Cochrane 

        Database of Systematic Reviews 2003, Issue 3. Art. No.: CD004169; doi. 10.1002/14651858.CD004169.pub2.                                                                

27.   García M J, Ardila A M, Cell volume variation under different concentrations of saline solution (NaCl), Rev colomb anestesiol, vol 37 no 2 Bogotá Apr./June 

        2009. 

28.   A Refaai M A, Conley G W, Henrichs K F, McRae H, Schmidt A E, Phipps R P, Spinelli S L, Masel D, Cholette J M, Pietropaoli A, Decreased Hemolysis and 

        Improved Platelet Function in Blood Components Washed With Plasma-Lyte A Compared to 0.9% Sodium Chloride, Am J Clin Pathol, 150(2018)146-153.

29.   Scales K, NICE CG 174: Intravenous fluid therapy in adults in hospital, Br J Community Nurs, 23(Sup 8)(2014)S6-S8.

30.   Wood B R, Hammer L, Davis L, McNaughton D, Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within 

        human erythrocytes, J Biomed Opt, 10 (2005)014005;doi. .org/10.1117/1.1854678.

31.   Li N, Li S X, Guo Z Y, Zhuang Z F, Li R, Xiong K, Chen S J, Liu S H, Micro-Raman spectroscopy study of the effect of Mid-Ultraviolet radiation on 

        erythrocyte membrane, J  Photoch Photobio B Biol, 112(2012)37-42.

32.   Barkur S, Lukose J, Chidangil S, Probing Nanoparticle–Cell Interaction Using Micro-Raman Spectroscopy: Silver and Gold Nanoparticle-Induced Stress 

        Effects on Optically Trapped Live Red Blood cells,  ACS Omega, 5  (2020)1439-1447.

33.   Lukose J, Mithun N, Priyanka M, Mohan G, Shastry S, Chidangil S, Laser Raman tweezer spectroscopy to explore the bisphenol A-induced changes in 

        human erythrocytes, RSC Advances, 9(2019)15933-15940.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                      Vol. 29 Nos 3 & 4, 2020, 355-369


A comparative study of optical and biological properties of Ag nanoparticles using leaves

 of Raphanus sativus, Trigonellafoenum-graecum and roots of Zingiberofficinale


L Jyothia,*, E Ramyab, N Venkateswara Reddyc, T Sreekanthd and D Narayana Raoa,*

aSchool of Physics, University of Hyderabad, Hyderabad- 500 046, India

bDepartment of Science and Humanities, MLR Institute of Technology, Dundigal, Hyderabad-500 043, India

cDepartment of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad-500 075, India

dDepartment of Physics, JNTUH College of Engineering, Jagtial, Nachupally (Kondagattu), Jagtial Dist, Telangana-505 501, India

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

___________________________________________________________________________________________________________________________________

The study focuses on the green synthesis of silver (Ag) nanoparticles (NPs) using various plant extracts. A detailed study on the reduction of silver ions to silver NPs mediated through leaves of Raphanussativus, Trigonellafoenum-graecum and roots of Zingiberofficinale extracts is presented and their luminescence and nonlinear optical properties are compared. Characterization of the synthesized NPs was performed through UV-Vis absorption, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction, Scanning Electron Microscopy and High-Resolution Transmission Electron Microscopic studies. The absorption, stabilization, particle sizes, shapes and morphology from these studies on the NPs derived from the three extracts are compared in this article. Luminescence enhancement and quenching of lanthanide ion complex was observed and found to be dependent on metal nanostructure concentration, which defines the rate of energy transfer between nanostructures and rare-earth (RE) ions. The nonlinear optical properties of Ag NPs were studied using Z-scan technique with picosecond laser. In order to test the therapeutic applications of these Ag NPs, in vitro cytotoxic effect of the Ag NPs synthesized using Trigonellafoenum-graecum was tested against A549 lung cancer cells and the particles synthesized using Zingiberofficinale was tried against HCT116 colon cancer cell lines. Observed results demonstrate that the nanostructures synthesized can be suitable candidates for applications in optics as optical limiters and optical switches and in biology as therapeutic agents for cancer cell lines.© Anita Publications. All rights reserved.© Anita Publications. All rights reserved.

Keywords: Green synthesis, Metal nanoparticles, Photoluminescence, Nonlinear optical properties, Anticancer activity.

References

1.   Bar H, Bhumi D K, Sahoo G P, Sarkar P, Sankar P D, Green synthesis of silver nanoparticles using latex of Jatropha curcas, Colliod Surface A: 

      Physicochemical and Engineering Aspects, 39(2009)134-139.

2.   Panneerselvam C, Ponarulselvam S, Murugan K, Potential anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees 

      (Acanthaceae), Arch Appl Sci Res, 6(2011)208-217.

3.   Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary, Srinivasan K, Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its 

      antibacterial activity, Spectrochim Acta, 79A(2011)594-598.

4.   Sastry M, Ahmad A, Islam N I, Kumar R, Biosynthesis of metal nanoparticles using fungi and actinomycete, Curr Sci, 85(2003)162-170.

5.   Sastry M, Ahmad A, Khan M I, Kumar R, Microbial nanoparticle production, Nanobiotechnology, 85(2003)163-169.

6.   Nelson D, Priscyla D M, Oswaldo L A, Gabriel I, Elisa E, Mechanical aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains,

      Nanobiotechnology, 3(2005); doi.org/10.1186/1477-3155-3-8.

7.   Hemanth N K S, Kumar G, Karthik L, Bhaskara R K V,  Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp, Arch 

      Appl Sci Res, 2(2010)161-167.

8.   Natarajan K, Subbalaxmi S V, Murthy V R, Microbial Production of Silver Nanoparticles, Dig J Nanomater Biostructures, 5(2010)135-140.

9.   Malik B, Pirzadah T B, Rehman R U, Kumar M, Metabolic Engineering for Bioactive Compounds, (eds) Kalia V C, Saini A K, (Springer Nature Singapore Pvt 

      Ltd),  2017; doe. 10.1007/978-981-10-5511-9_16

10. Sathyavathi R,  Krishna M B M, Rao D N, Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting,

      Nanosci Nanotechnol, 10(2010)1-5.

11. Ramya E, Jyothi L, Rao D N, Influence of Optical Properties of Ag NPs from Raphanus sativus Leaf Extract on Lanthanide Complexes, Plasmonics

      12(2017)1601-1611.

12. Ramya E, Jyothi L, Gopal N S, Narayana Rao D N, Optical and biomedical properties of eco-friendly metal nanostructures synthesized using Trigonella 

      foenum-graecum leaf extract, Appl Nanosci, 8(2018)771-783.

13. Ramya E, Jyothi L, Vardhan P V, Gopal N S, Rao D N, Optical and biomedical applications of eco-friendly biosynthesized silver nano spheres using zingiber 

      officinale root extract, Nano Express, 1(2020)010021; doi.org/10.1088/2632-959X/ab85d1.

14. Kasthuri J, Kathiravan K, Rajendran N, Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach, J Nanopart Res

      11(2009)1075-1085.

15. Vijayaraghavan K, Nalini S P K, Prakash N U, Madhankumar D, Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum,

      Mat Lett, 75(2012)33-35.

16. Agnesi A, Dallocchio P, Pirzio F, Reali G, Compact sub-100-fs Nd: silicate laser, Opt Commun, 282(2009)2070-2073.

17. Shen J, Sun L D, Yan C H, Luminescent rare earth nanomaterials for bioprobe applications, Dalton Trans, 14(2008)5687-5697.

18. Riwotzki K, Hasse M, Wet-chemical synthesis of doped colloidal nanoparticles:YVO4 :Ln (Ln = Eu, Sm, Dy), J Phys Chem B, 102(1998)10129-10135.

19. Selvin P R, The renaissance of fluorescence resonance energy transfer, Nature Struct Biol, 7(2000)730-734.

20. Tam F, Goodrich G P, Johnson B R, Halas N J, Plasmonic enhancement of molecular fluorescence, Nano  Lett, 7(2007)496-501

21. Kreibig U, Vollmer M, Optical Properties of Metal Clusters, (Springer, Berlin), 1995.

22. Eichelbaum M, Kneipp J, Schmidt B E, Panne U, Rademann K, SERS and Multiphoton-Induced Luminescence of Gold Micro- and Nanostructures Fabricated 

      by NIR Femtosecond-Laser Irradiation, Chem Phys Chem, 9(2008) 2163-2167.

23. Anger P, Bharadwaj P, Novotny L, Enhancement and quenching of single-molecule fluorescence, Phys Rev Lett, 96(2006)113002; 

      doi.org/10.1103/PhysRevLett.96.113002.

24. Kuladeep R, Jyothi L, Alee K S, Deepak K L N, Rao D N, Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance 

      frequency, Opt Mat Exp, 2(2012)161-172.

25. Kuladeep R, Jyothi L, Prakash P,  Shekhar S M, Prasad M D,  Rao D N, Investigation of optical limiting properties of Aluminium nanoparticles prepared by 

      pulsed laser ablation in different carrier media, J Appl Phys, 114(2013)243101; doi.org/10.1063/1.4852976.

26. Zhang H, Zelmon D E, Deng L G, Liu H K, Teo B K, Optical Limiting Behavior of Nanosized Polyicosahedral Gold−Silver Clusters Based on Third-Order 

      Nonlinear Optical Effects, J Am Chem Soc, 123(2001)11300-11301.

27. Hussiney S M, Salah T A, Anter H A, Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities,

      Beni-Suef University Journal of Basic and  Appl Sci, 4(2015)225-231.

28. Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M, Hyeon T, Ultra-large-synthesis of monodisperse nanocrystals, Nat Mater

      3(2004)891-895.

29. Nabika H, Deki S, Surface-enhanced luminescence from Eu3+ complex nearby Ag colloids, Eur Phys J D, 24(2003) 369-372.

30. Chen S H, Huang C-L, Yu C-F, Guan-Fu Wu,  Kuan Y-C, Cheng B-H, Li Y-R, Efficacy improvement in polymer LEDs via silver-nanoparticle doping in the 

      emissive layer, Opt Lett, 42(2017)3411-3414.  

31. Tam F, Goodrich G P, Johnson B R, Halas N J, Plasmonic enhancement of molecular fluorescence, Nano Lett, 7(2007)496-501.

32. Sheik-Bahae M, Said A A, Wei T- H, Hagan D J,  Stryland EWV, Sensitive measurement of optical nonlinearities using a single beam, IEEE J Quantum 

      Electron, 26(1990)760-769.

33. Maddinedi S B, Mandal B K, Ranjan S, Nandita D, Diastase assisted green synthesis of size-controllable gold nanoparticles, RSC Adv, 5(2015)26727-26733.

34. Malu S P, Obchi G O, Tawo E N, Nyong B E, Antibacterial activities and medicinal properties of ginger, Glob J Pure and Appl Sci, 15(2009)365-368.

35. Elavazhagan  T,  Arunachalam  K  D,  Memecylon  edule  leaf  extract  mediated  green  synthesis  of  silver  and  gold  nanoparticles, Int J Nanomedicine

      6(2011)1265-1278.

36. Gottesman M M, Fojo T, Bates S E, Multidrug resistance in cancer: role of ATP–dependent transporters, Nat Rev Cancer, 2(2002)48-58.

37. Renugadevi K, Aswini V, Raji P, Microwave irradiation assisted synthesis of silver nanoparticle using leaf extract of Baliospermum montanum and evaluation 

      of its antimicrobial, anticancer potential activity, Asian J Pharm Clin Res, 4(2012)283-287.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                      Vol. 29 Nos 3 & 4, 2020, 371-376


Physico-chemical characteristics of glauconite Beloozersky deposits

 

S B Venig, R K Chernova, V G Serzhantov, E I Selifonova*,  and G N Naumova

Saratov State University, 410012, Astrakhanskaya st. 83, Saratov, Russia

This article is dedicated to Prof Pradeep K Gupta for his contributions to optics and photonics with biomedical applications

___________________________________________________________________________________________________________________________________

Glauconite is used as a valuable industrial multi-purpose raw material. In this work, glauconite of the Beloozersky deposit of the Saratov region, Russia was investigated. The surface morphology of glauconite grains and elemental composition were determined by scanning electron microscopy, and the phase composition of glauconite in the Saratov region was determined. The mineralogical composition of glauconite of the Beloozersky deposit is determined on the basis of x-ray phase analysis (XRPA). It was revealed that glauconite of the Saratov region  deposit has good sorption properties with respect to doxycycline and chlorhexidine. Therefore, sorption can be used as a method of immobilization of these biologically active substances to obtain composites as potential enterosorbents . © Anita Publications. All rights reserved.

Keywords: Glauconite, Scanning electron microscopy, Sorption, Doxycycline, Chlorhexidine.

References

1.   Venig S B, Chernovа R K, Serzhantov V G,. Splyukhin V P, Perespelova M A, Selifonova E I, Naumova G N,  Zakharevich A M, Selifonov A A,  

      Kozhevnikov O, Scherbakova  N N, Determination of the sorption characteristics of glauconite during extraction of a pharmaceutical from an aqueous 

      medium, Moscow University Chemistry Bulletin, 72(2017)245-250.

2.   Belousov P,  Semenkova A, Egorova T, Romanchuk  A, Zakusin S, Dorzhieva O, Ekaterina Tyupina E, Izosimova Y, Tolpeshta I, Chernov M, Krupskaya V, 

      Cesium Sorption and Desorption on Glauconite, Bentonite, Zeolite, and Diatomite,  Minerals, 9(2019)625; doi.org/10.3390/min9100625

3.   Wang J P, Chi F, Kim I H, Effects of montmorillonite clay on growth performance, nutrient digestibility, vulva size, faecal microflora, and oxidative stress in 

      weaning gilts challenged with zearalenone, Anim Feed Sci Technol, 178(2012)158-163.

4.   Yiannikouris A, Kettunenb H, Apajalahtib J, Pennala E, Moran CA, Comparison of the sequestering properties of yeast cell wall extract and hydrated sodium 

      calcium aluminosilicate in three in vitro models accounting for the animal physiological bioavailability of zearalenone, Food Addit & Contaminants: Part A, 

      30(2013)1641-1650.

5.   Venig S B, Chernova R K, Serzhantov V G, Selifonov A A, Shapoval O G, Nechaeva O V, Splyukhin V P, Selifonova E I, Naumova G N, Scherbakova N N, 

      Antibacterial Composites Based on a Natural Sorbent, Moscow University Chemistry Bulletin,, 73(2018)125-130.                                                                          

6.   Venig S B, Chernova R K, Sergeantov V G, Selifonov A A, Shapoval O G, Nechaeva O V, Splyukhin V P, Zakharevich A M, Selifonova E I, Naumova G N, 

      Scherbakova N N, Synthesis of glauconite composites and study of antibacterial activity,  J Biomed Photonics Eng, 2(2016)1-5.

7.   Amorosi A, Guidi R, Mas R, Falanga E, Glaucony from the Cretaceous of the Sierra de Guadarrama (Central Spain) and its application in a sequence-

      stratigraphic context, Int J Earth Sci, 101(2012)415-427.

8.   McRae S G, Glauconite, Earth Sci Rev, 8(1972)397-440.

9.   Soni M K, On the possibility of using glauconite sandstone as a source of raw material for potash fertilizer, Indian Miner Eng J, 25(1990)3-10.

10. Giresse P, Jamet R, Essais de fertilisation de la culture du manioc par les sédiments marins glauconieux du Congo,  Pédologie, 19(1982)283-292.

11. Rudmin M, Banerjee S, Makarov B, Mazurov A, Ruban A, Oskina Y, Shaldybin M, An investigation of plant growth by the addition of glauconitic fertilizer, 

      Appl Clay Sci, 180(2019)105178; doi.org/10.1016/j.clay.2019.105178

12. Franzosi C, Castro L N, Celeda A M, Technical evaluation of glauconies as alternative potassium fertilizer from the salamanca formation, patagonia, 

      Southwest Argentina,  Nat Resour Res, 23(2014)311-120.

13. Prakash S, Verma J P, Does Glauconite be an Emerging and Potential Source of Potash Fertilizer?, Recent Adv Petrochem Sci, 4(2018)555649; doi. 

      10.19080/RAPSCI.2018.04.555649.

14. Abdolzadeha E K A, Sadeghipoura H R, Aminei A, The potential of glauconitic sandstone as a potassium fertilizer for oliveplants, Arch Agron Soil Sci

      58(2011)983-993.

15. El-Habaak G, Askalany M, Faraghaly M, Abdel-Hakeem M, The economic potential of El-Gedida glauconite deposits, El-Bahariya Oasis, Western Desert, 

      Egypt, J Afr Earth Sci, 120(2016)186-197.

16. Rudmin M, Banerjee S, Mazurov A, Makarov B, Martemyanov D, Economic potential of glauconitic rocks in  Bakchar deposit (S-E Western Siberia) for 

      alternate potash fertilizer, Appl Clay Sci, 150(2017)225-233.

17. Gregorio M C D,  Neeff  D V, Jager A V, Corassin C H, Cara A C P, Mineral adsorbents for prevention of mycotoxins in animal feeds, Toxin Rev, 35(2014)267-

      274.

18. Doll S, Gericke S, Danicke S, The efficacy of a modified aluminosilicate as a detoxifying agent in Fusarium toxin contaminated maize containing diets for 

      piglets, J Anim Physiol Anim Nutr (Berl), 89(2005)342-358.

19. Eriksen G S, Pettersson H, Toxicological evaluation of trichothecenes in animal feed, Anim Feed Sci Technol, 114(2004)205-209.

20. Chkuaseli А, Khutsishvili-Maisuradze M, Chagelishvili A, Natsvaladze K, Lashkarashvili T, Chagelishvili G, Maisuradze N, Application of new mycotoxin 

      adsorbent-bentonite clay “Askangel” in poultry feed, Ann Agrar Sci, 14(2016)295-298.

21. Huwiga A, Freimunda S, Kappelib O, Dutlerb H, Mycotoxin detoxication of animal feed by different adsorbents, J Els Toxicol Lett, 122(2001)180-185.

22. Gregorio M C, Neeff D V, Mineral adsorbents for prevention of mycotoxins in animal feeds, J Toxin Rev, 33 (2014)3-6. 

23. Bocaroy-Stancic A, Adamovic M, Salma N, In Vitro efficacy of mycotoxins' adsorbtion by natural mineral adsorbents, J Biotechnol Animal Husb, 

      27(2011)1244-1245.

24. Eser H, Yalc S, Yalc S, Sehu A, Effects of sepiolite usage in broiler diets on performance, carcass traits and some blood parameters, Kafkas Univ Vet Fak Derg

      188(2012)313-319.

25. Jiang S, Yang Z, Yang W, Physiopathological effects of zearalenone in post-weaning female piglets with or without montmorillonite clay adsorbent, Livest Sci, 

      6(2010)130-136.

26. Harper A F, Estienne M J, Meldrum J B, Assessment of a hydrated sodium calcium aluminosilicate agent and antioxidant blend for mitigation of aflatoxin-

      induced physiological alterations in pigs, J Swine Health Prod, 18(2010) 282-291.

27. Neeff D V, Ledoux D R, Rottinghaus G E, In vitro and in vivo efficacy of a hydrated sodium calcium aluminosilicate to bind and reduce aflatoxin residues in 

      tissues of broiler chicks fed aflatoxin B1, Poult Sci, 92(2013)131-139.

28. Tomašević-Čanović M, Daković A, Rottinhghaus G, Matijašević S, Đuričić M, Surfactant modified zeolites––new efficient adsorbents for mycotoxins,

      Microporous Mesoporous Mater, 61(2003)173-180.

29. Guggenheim S, Adams J M, Bain D C, Bergaya F, Brigatti M F, Drits V A, Formoso M L L, Galan E, Kogure T, Stanjek H, Summary of recommendations of 

      Nomenclature Committees relevant to clay mineralogy: Report of the association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee 

      for 2006, Clay Clay Miner, 54(2006)761-772.

___________________________________________________________________________________________________________________________________

© ANITA PUBLICATIONS

All rights reserved

Designed & Maintained by

Manoj Kumar