An International Peer Reviewed Research Journal

Title Vol 28 Nos 10-12(2019)

AJP

SSN : 0971 - 3093

Vol 28, Nos 10-12, October-December, 2019


Asian


Journal of Physics

_________________________________________________________________________________________________________________________________

Volume 28, Nos 10-12, October-December 2019

_________________________________________________________________________________________________________________________________


A Special Issue Dedicated


to


Prof Kehar Singh
 

Formerly Professor of Physics at IIT Delhi


Anita Publications
FF-43, 1st Floor, Mangal Bazar, Laxmi Nagar, Delhi-110 092, India


About Professor Kehar Singh

Professor Kehar Singh served as a member of the faculty at IIT Delhi since 1965 in various capacities. He was an ‘Academic Visitor’ at  Imperial College of Science & Technology, London during 1969-1970, and visited / carried out research for short periods at  British Scientific and Industrial Research Association Ealing , Queen’s Univ. Belfast , and National Physical Laboratory Teddington. He had been a Professor since January 1984 and during the period 1996-1999 served as Head of Physics Deptt. Prof. Singh held the position of Dean, Post Graduate Studies and Research, IIT Delhi during the period of March 2001-Aug. 2003. He served as CLUSTER Chair at the Swiss Federal Institute of Technology, Lausanne (Switzerland) in Dec. 2002. Until June 30, 2011 he served as an Emeritus Professor at IIT Delhi where he continued to teach and carry out research.

Prof Kehar Singh

Since 2011, he has been an Hony. Distinguished Research Professor at ITM (now NorthCap) University, Gurgaon (Haryana) where he mentors a group of faculty members and supervises research in the areas of Information security and Nanophotonics (Photonic band gap structures, metamaterials, and plasmonics). Prof. Singh is also Chairman of the Research Council, IRDE (Defense Research & Development Organization) Dehradun and a member of the Cluster Advisory Council for a group of DRDO laboratories. He is a Member of the Research Council of National Physical Laboratory New Delhi. Since  May 2015, he has been working as an Associate Editor of Optics Express, a high impact factor journal of the Optical Society of America (OSA). 
Prof. Kehar Singh has been an active researcher and educator and created infrastructural facilities for teaching and research in his areas of specialization: Photonics/Information Optics (Image formation and evaluation, Dynamic holography, Nonlinear photorefractives, Optical correlators, Holographic storage, Digital holography, Singular optics, and Optical cryptography). He has published extensively, having authored / co-authored nearly 350 peer reviewed research papers. Besides these there are approx. 75 review articles in books and journals, and 70 papers in conference proceedings. His research papers have been cited extensively in the literature; one of the papers having crossed the number of 960 citations.
Research publications by Prof. Singh and coworkers during the period 1965-1985 resulted in 11 Ph.D. theses. Since 1986, 20 students have completed Ph.D. degree under the supervision of Prof. Singh. Besides these, 75 Master of Technology and M.Sc. students have been guided in their dissertation work. He had been the backbone of the M.Tech. program in Applied Optics at IIT Delhi ever since it started in 1966. This program has produced many scientists who occupy key positions in India and abroad.
Professor Kehar Singh was honoured with Shanti Swarup Bhatnagar Award in Physical Sciences in 1985 by the CSIR, Govt. of India. He has been awarded in 2001, the Galileo Galilei Award of the International Commission on Optics. The Optical Society of India honoured him with the ‘OSI Award’. He was also given ‘Life Time Achievement Award’ at the OSI symp. held at Tezpur in Dec.2007,and Golden Jubilee ‘Distinguished Service Award’ of IIT Delhi in 2011.Prof.Singh was also honored in 2011,under the Golden Jubilee ‘Honor the Mentor’ program’ of IIT Delhi.
Prof.Singh is a Fellow of the Optical Society of America, SPIE (The International Society for Optical Engineering), and Indian National Academy of Engineering, in addition to being  a Fellow of the Optical Society of India and the Laser & Spectroscopy Society of India. He was President of the Optical Society of India from 1991 to 1994 and its Vice-President from 1988 to 1991. He also served as the President of ‘Laser and Spectroscopy Society’ of India and was President, Indian Science Congress Association (Physical Sciences Section) in 2004. Prof. Singh had been an international advisory  member of the editorial board of Optical Review (Japan, 1994-2010 ), Member of the editorial boards of Optics & Lasers in Engg. (Elsevier, 1999 – 2006). Currently he serves as an Associate Editor of Optics Express (2015----todate), Computer Optics (Russia), J. Optics (India, 1974 – to date), Asian J. Phys. (1992 – to date). and  Invertis J. Science and Technol (2007- ). He also served as an editorial board member of the Indian J. Pure Appl. Phys. (CSIR, 1986 – 88).
Prof. Singh has been serving as a reviewer of research papers for several journals of repute. He has given approx. 100 invited lectures in various international and national conferences/seminars/workshops and has also been associated as member of organizing/technical/steering committees of several international and national conferences/seminars/ workshops. He has visited U.K, France, Italy, Switzerland, Germany, Czechoslovakia, Canada, USA, Mexico, Japan, South Korea, Australia, Singapore, and Indonesia for delivering lectures in conferences. He was one of the Directors of the II Winter College in Optics held at ICTP, Trieste, Italy during Feb-March, 1995.
Professor Singh’s research work attracted funding for sponsored research in the field of Optics and Photonics from a number of Govt. agencies such as Department of Science and Technology, Ministry of Human Resource Development, and Defense Research and Development Organization. He has served on many committees of the Govt. of India (e.g. Environmental Impact Assessment Committee, Ministry of Environment and Forests) and has been a consultant to some industries.
As Technical chair of the International Conference on ‘Optics and Optoelectronics’ held in Dehradun, India in Dec. 1998, Prof. Singh co-edited a two volume proceedings of the conference, and SPIE volume 3729, Selected papers from International Conference on Optics and Optoelectronics’98 (Silver Jubilee Symposium of the Optical Society of India). He was Technical co-chair of the International conference on Optics and Opto-electronics  held in December 2005 at Dehradun, and Co-chair Advisory Committee of the OSI confer. held in Jan.2012 at IIT Delhi. He was Technical chair of OSI’s international conference held at GJ Univ.of Science &Technol. in Hisar, during the period Nov. 23-26, 2017, and Chair International Advisory Committee of Photonics-2018 held at IIT Delhi during the period Dec. 12-15,2018. Prof Singh is also the Technical Chair and Chair International Advisory Committee of the upcoming International Conference on Optics and Electro-optics to be held at IRDE Dehradun during the period Oct.19-22,2019.
Professor Singh has  edited / co-edited 2 special issues on ‘Photorefractives and their applications’ of J. Optics (India), 4 issues on ‘Optical pattern recognition’ and ‘Optical information security’ of Asian J. Physics, and a book on ‘Perspectives in Engineering Optics’. A book brought out by IIT Delhi, containing memoirs of some of the ‘Golden Jubilee Distinguished Award’ winner retired faculty members of IIT Delhi, has also been edited by Prof. Singh.
Prof. Singh has also served as a member/chair of several national committees of the MHRD, CSIR, ISRO, DRDO, and INAE. Besides having served as a consultant to some industries/organizations, he has also been a consultant on security holograms to some state Govts. in India. He served as a member of the Executive Committee, National Photonics Program DRDO, and is a member of the National Advisory Council, NorthCap University Gurgaon. He served as a member of the Board of Governors of Regional Engineering College. Kurukshetra and served on the ‘Academic advisory councils’, ‘Board of Studies’ and ‘Research degree committees’ of several universities. He also served as an invited Senate member of National Institute of Technology Agartala (Tripura).

About the Guest Editor
Rajpal S. Sirohi is currently serving in the Physics Department, Alabama A&M University, Huntsville, Alabama USA. Prior to this (2013-2016), he was the Chair Professor, Physics Department, Tezpur University, Tezpur, Assam, India. He was Distinguished Scholar (2011-2013) in the Department of Physics and Optical Engineering, Rose Hulman Institute of Technology, Terre Haute, Indiana, USA. During 2000-2011, he had been deeply engaged in academic administration and research as Director, IIT Delhi (Dec. 2000-April 2005); Vice-Chancellor, Barkatullah University, Bhopal (April 2005-Sept. 2007); Vice-Chancellor, Shobhit University, Meerut (Oct.2007-March 2008); Vice-Chancellor, Amity University Rajasthan, Jaipur (March 2008-Oct.2009) and Vice-Chancellor, Invertis University, Bareilly (Jan 2011-Oct.2011).

R S Sirohi

He was also Visitor to Teerthanker Mahaveer University, Moradabad (June 2012- June 2013). Prof. Sirohi did his Masters in Physics in 1964 from Agra University, and Post M.Sc. in Applied Optics and Ph. D. in Physics both from Indian Institute of Technology, New Delhi in 1965 and 1970, respectively. Prof. Sirohi was Assistant Professor in Mechanical Engineering Department at Indian Institute of Technology Madras during 1971-1979. He became Professor in the Physics Department of the same Institute in 1979. He superannuated in April 2005 from IIT Delhi.
Prof. Sirohi worked in Germany as a Humboldt Fellow at PTB, Braunschweig, and as a Humboldt Awardee at Oldenburg University. He was a Senior Research Associate at Case Western Reserve University, Cleveland, Ohio, and Associate Professor, and Distinguished Scholar at Rose Hulman Institute of Technology, Terre Haute, Indiana. He was ICTP (International Center for Theoretical Physics, Trieste Italy) Consultant to Institute for Advanced Studies, University of Malaya, Malaysia and ICTP Visiting Scientist to the University of Namibia. He was Visiting Professor at the National University of Singapore and EPFL, Lausanne, Switzerland.
Prof. Sirohi is Fellow of several important academies/ societies in India and abroad including the Indian National Academy of Engineering; National Academy of Sciences India; Optical Society of America; Optical Society of India; SPIE (The International Society for Optical Engineering); Instrument Society of India and honorary fellow of ISTE and Metrology Society of India. He is member of several other scientific societies, and founding member of India Laser Association. Prof. Sirohi was also the Chair for SPIE-INDIA Chapter, which he established with co-operation from SPIE in 1995 at IIT Madras. He was invited as JSPS (Japan Society for the Promotion of Science) Fellow and JITA Fellow to Japan. He was a member of the Education Committee of SPIE.
Prof. Sirohi has received the following awards from various organizations:
Humboldt Research Award (1995) by the Alexander von Humboldt Foundation, Germany; Galileo Galilei Award of International Commission for Optics (1995); Amita De Memorial Award of the Optical Society of India (1998); 13th Khwarizmi International Award, IROST (Iranian Research Organisation for Science and Technology (2000); Albert Einstein Silver Medal, UNESCO (2000); Dr. YT Thathachari Prestigious Award for Science by Thathachari Foundation, Mysore (2001); Pt. Jawaharlal Nehru Award in Engineering & Technology for 2000 (awarded in 2002) by MP Council of Science and Technology; NRDC Technology Invention Award on May 11, 2003; Sir CV Raman Award: Physical Sciences for 2002 by UGC (University Grants Commission); Padma Shri, a national Civilian Award (2004); Sir CV Raman Birth Centenary Award (2005) by Indian Science Congress Association, Kolkata; Holo-Knight (2005), inducted into Order of Holo- Knights during the International Conference-Fringe 05-held at Stuttgart, Germany; Centenarian Seva Ratna Award (2004) by The Centenarian Trust, Chennai; Instrument Society of India Award (2007); Gabor Award (2009) by SPIE (The International Society for Optical Engineering) USA; UGC National Hari OM Ashram Trust Award - Homi J. Bhabha Award for Applied Sciences (2005) by UGC; Distinguished Alumni Award (2013) by Indian Institute of Technology Delhi; Vikram Award 2014 by SPIE (The International Society for Optical Engineering) USA.
Prof. Sirohi was the President of the Optical Society of India during 1994-1996. He was also the President of Instrument Society of India for three terms (2003-06, 2007-09, 2010-12). He was on the International Advisory Board of the Journal of Modern Optics, UK and on the editorial Boards of the Journal of Optics (India), Optik, Indian Journal of Pure and Applied Physics. He was Guest Editor to the Journals “Optics and Lasers in Engineering” and “Optical Engineering”. He was Associate Editor of the International Journal “Optical Engineering”, USA during (1999-Aug.2013), and currently is its Senior Editor. He is the Series Editor of the Series on ‘Advances in Optics, Photonics and Optoelectronics’ published by Institute of Physics Publishing, UK. He is also on the Editorial Board of Asian Journal of Physics.
Prof. Sirohi has 456 papers to his credit with 244 published in national and international journals, 67 papers in Proceedings of the conferences and 145 presented in conferences.He has authored/co-authored/edited thirteen books including five milestones for SPIE. He was Principal Coordinator for 26 projects sponsored by Government Funding Agencies and Industries, has supervised 25 Ph.D. theses, 7 M.S. theses and numerous B.Tech., M.Sc. and M.Tech. theses.
Prof. Sirohi’s research areas are Optical Metrology, Optical Instrumentation, Laser Instrumentation, Holography and Speckle Phenomenon.


Asian Journal of Physics

(A Publication Not for Profit)

Volume 28, Nos 10-12 (2019)


CONTENTS


Editorial


Guest Editorial


About Prof Kehar Singh


About the Guest Editor


Transport of intensity equation for phase imaging: A review

Alok K Gupta and Naveen K Nishchal                                                                                                                                                                                       777


Performance analysis of an improved target detection technique based on quadratic correlation filters for surveillance applications

Arun Kumar and Unnikrishnan Gopinathan                                                                                                                                                                              787


Polarized light in biophotonics: enabling technology towards tissue characterization, diagnosis and imaging

S Chandel, S Saha and N Ghosh                                                                                                                                                                                                 795


Qualitative and quantitative assessment of emotions from image sequences using optical flow magnitude

Shivangi Anthwal and Dinesh Ganotra                                                                                                                                                                                       813


Optical image encryption using various mathematical transforms and structure phase masks: A review

Anshula and Hukum Singh                                                                                                                                                                                                          825


Speckle-free common-path digital interference phase microscopy using single element interferometers with partially spatially coherent light source

Veena Singh, Shilpa Tayal and Dalip Singh Mehta                                                                                                                                                                     857


Generation of Stokes vortices in three, four and six circularly polarized beam interference

Sushanta Kumar Pal, Sarvesh Bansal and P Senthilkumaran                                                                                                                                                    867


Guided wave photonics for light sources, sensors and passive components at mid-IR

Babita Bakshi (nee Kumari), Ajanta Barh, Somnath Ghosh, Ravendra K Varshney and Bishnu P Pal                                                                                     877


Trends in micro-optics and nanophotonics technology

Amitava Ghosh, Amit K Agarwal and M P Singh                                                                                                                                                                       891


Broadband infrared emissivity engineering in optically transparent metamaterials by regulation of electromagnetic resonances

Nitish Kumar Gupta, Harshawardhan Wanare and S Anantha Ramakrishna                                                                                                                           899


Degree of polarization of a spectral electromagnetic Gaussian Schell-model beam passing through 2-f and 4-f lens systems

Rajneesh Joshi and Bhaskar Kanseri                                                                                                                                                                                         907


Role of speckle grains in the information optics

R K Singh                                                                                                                                                                                                                                    921


Imaging based system for performing total leukocyte count in minute volumes of human blood

Bhargab Das, Swati Bansal, Girish C Mohanta, Sanjit K Debnath, Raj Kumar and Prateek Bhatia                                                                                       929


Noise sensitivity of the fast two-step fractional fringe detection method in digital holography

Kedar Khare                                                                                                                                                                                                                               941


Asymmetric color image encryption mechanism using equal modulus and random decomposition in hybrid transform domain

Pankaj Rakheja, Phool Singh, A K Yadavand Akhil Arora                                                                                                                                                        947


Plasmonic nanowire coupled to zero-dimensional nanostructures: A brief review

Sunny Tiwari, Chetna Taneja and G V Pavan Kumar                                                                                                                                                                961


Phase reconstruction using compressive parallel phase shift digital holography with Haar wavelet sparsification

Prakash Ramachandran and Anith Nelleri                                                                                                                                                                                983


Vectorial imaging techniques for insights into the principles of optical tweezers

Sirshendu Dinda and Debabrata Goswami                                                                                                                                                                               989


Self-similar light structures in the far field diffraction regions of self-similar radial Walsh filters

P Mukherjee and L N Hazra                                                                                                                                                                                                      1015


Consideration of freshness and taste of Japanese tomatoes - Comparison of laser biospeckle, and different sensing technologies with human perception

Uma Maheswari Rajagopalan, Yuya Tanaka and Hirofumi Kadono                                                                                                                                         1027


Optical metrology via the photorefractive effect

Arun Anand and C S Narayanamurthy                                                                                                                                                                                      1035


Phase-controlled interference lithography: Recent advances in efficient designing of photonic architectures

Swagato Sarkar and Joby Joseph                                                                                                                                                                                              1049


Multi-pass, multi-beam and multi-wavelength optical interferometries

Rajpal S Sirohi                                                                                                                                                                                                                           1091


Quantitative phase imaging techniques: Clinical practices

Hanu Phani Ram, Aswathy Vijay, Vikas Thapa, Ashwini Subhash Galande, Renu John                                                                                                          1103


Surface plasmons resonance based refractive index sensors using bimetallic configurations

Ashish Bijalwan and Vipul Rastogi                                                                                                                                                                                           1127


Investigations of magnetic resonances with modulated laser excitation in the atomic medium for magnetometry applications

Gour S Pati and Renu Tripathi                                                                                                                                                                                                  1149


Light Scattering by Turbid Media

M R Shenoy and Kalpak Gupta                                                                                                                                                                                                 1163


Variational method for the modes of optical fibers

Anurag Sharma                                                                                                                                                                                                                          1175


Optical and photoluminescence properties of Ca and Cd doped spin coated nanocrystalline ZnO thin films

Anchal Srivastava                                                                                                                                                                                                                      1187


Understanding dynamic beam shaping using liquid crystal spatial light modulator based binary holograms

Karuna Sindhu Malik, Nagendra Kumar, Akanshu Chauhan, Nedup Sherpa and Bosanta R Boruah                                                                                     1197

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 777-786


Transport of intensity equation for phase imaging: A review

Alok K Gupta and Naveen K Nishchal
Department of Physics, Indian Institute of Technology Patna,
Bihta, Patna-801 106, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

Quantitative phase imaging has attracted widespread attention of the research community because of its extensive applications in metrology and biological sciences. The techniques are broadly divided into interferometric and non-interferometric categories. The transport of intensity equation (TIE) based phase imaging method comes under the non-interferometric category. The TIE has usual advantages over the interferometric techniques because of partial coherence illumination and direct phase recovery without any unwrapping complexity. However, it has some limitations also such as paraxial approximation, near Fresnel region diffraction, and knowledge of appropriate boundary conditions. This article reviews the difficulties and complexities while solving the TIE for accurate quantitative phase map. © Anita Publications. All rights reserved.
Keywords: Non-interferometric phase imaging, Transport of intensity equation, Quantitative phase imaging

References
1.   Zernike F, How I discovered phase contrast, Science, 121(1955)345-349.
2.   Nomarski G, Differential microinterferometer with polarized waves, J Phys Radium, 16(1955)9S-13S.
3.   Bernet S, Jesacher A, Furhapter S, Maurer C, Ritsch-Marte M, Quantitative imaging of complex samples by spiral phase contrast microscopy, Opt Express, 

      14(2006)3792-3805.
4.   Nehmetallah G, Banerjee P P, Applications of digital and analog holography in 3D imaging, Adv Opt Photonics, 4(2012)472-553.
5.   Schnars U, Falldorf C, Watson J, Jüptner W, Digital Holography and Wavefront Sensing, (Springer), 2014.
6.   Kim M K, Principles and techniques of digital holographic microscopy, SPIE Rev, 1(2010)018005; doi. 10.1117/6.0000006.
7.   Charrière F, Kühn J, Colomb T, Montfort F, Cuche E, Emery Y, Weible K, Marquet P, Depeursinge C, Characterization of microlenses by digital holographic

      microscopy, Appl Opt, 45(2006)829-835.
8.   Kemper B, Bally G V, Digital holographic microscopy for live cell applications and technical inspection, Appl Opt, 47(2008)A52-A61; doi.org/10.1364

      /AO.47.000A52
9.   Marquet P, Rappaz B, Magistretti P J, Cuche E, Emery Y, Colomb T, and Depeursinge C, Digital holographic microscopy: a noninvasive contrast imaging

      technique allowing quantitative visualization of living cells with subwavelength axial accuracy, Opt Lett, 30(2005)468-470.
10. Maiden A M, Rodenburg J M, Humphry M J, Optical ptychography: a practical implementation with useful resolution, Opt Lett, 35(2010)2585-2587.
11. Marrison J, Raty L, Marriot P, O’Toole P, Ptychography – a label free, high-contrast imaging technique for live cells using quantitative phase information, Sci

      Rep, 3(2013)2369; doi.org/10.1038/srep02369
12. Ou X, Horstmeyer R, Yang C, Zheng G, Quantitative phase imaging via Fourier ptychographic microscopy, Opt Lett, 38(2013)4845-4848.
13. Teague M R, Deterministic phase retrieval: A Green’s function solution, J Opt Soc Am, 73(1983)1434-1441.
14. Streibl N, Phase imaging by the transport equation of intensity, Opt Commun, 49(1984)6-10.
15. Paganin D, Nugent KA, Non-interferometric phase imaging with partially coherent light, Phys Rev Lett, 80(1998)2586-2589.
16. Roddier F, Roddier C, Roddier N, Curvature sensing: A new wavefront sensing method, Procd 32nd Annual International Tech. Sym. on Optical and

      Optoelectronic Applied Science and Engineering, San Diego, CA, USA, (1988).
17. Ishizuka A, Mitsuishi K, Ishizuka K, Direct observation of curvature of the wave surface in transmission electron microscope using transport intensity equation,

      Ultramicroscopy, 194(2018)7-14.
18. Bajt S, Barty A, Nugent K, McCartney M, Wall M, Paganin D, Quantitative phase-sensitive imaging in a transmission electron microscope, Ultramicroscopy,

      83(2000)67-73.
19. Ishizuka A, Ishizuka K, Mitsuishi K, Boundary-artifact-free observation of magnetic materials using the transport of intensity equation, Microsc Microanal,

      24(2018)924-925.
20. Nugent K A, Coherent methods in the X-ray sciences, Adv Phys, 59 (2010)1-99.
21. Schmalz J A, Gureyev T E, Paganin D M, Pavlov K M, Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the

      transport-of-intensity equation, Phys Rev A, 84(2011)023808; doi.org/10.1103/PhysRevA.84.023808.
22. Allman B, McMahon P, Nugent K, Paganin D, Jacobson D, Arif M, Werner S, Phase radiography with neutrons, Nature, 408(2000)158-159.
23. Chen N, Zuo C, Lam E Y, Lee B, 3D Imaging based on depth measurement technologies, Sensors, 18(2018)3711; doi.org/10.3390/s18113711.
24. Komuro K, Yamazaki Y, Nomura T, Transport of intensity computational ghost imaging, Appl Opt, 57(2018)4451-4456.
25. Barty A, Nugent K, Paganin D, Roberts A, Quantitative optical phase microscopy, Opt Lett, 23(1998)817-819.
26. Zuo C, Chen Q, Qu W, Asundi A, High-speed transport-of-intensity phase microscopy with an electrically tunable lens, Opt Express, 21(2013)24060-24075.
27. Waller L, Luo Y A, Yang S Y, Barbastathis G, Transport of intensity phase imaging in a volume holographic microscope, Opt Lett, 35(2010)2961-2963.
28. Waller L, Kou S S, Sheppard C J R, Barbastathis G, Phase from chromatic aberrations, Opt Express, 18(2010) 22817-22825.
29. Camacho L, Mico V, Zalevsky Z, Garcia J, Quantitative phase microscopy using defocusing by means of a spatial light modulator, Opt Express,

      18(2010)6755-6766.
30. Agour M, Falldorf C, Kopylow C, Bergmann R B, Automated compensation of misalignment in phase retrieval based on a spatial light modulator, Appl Opt, 

      50(2011)4779-4787.
31. Gorthi S S, Schonbrun E, Phase imaging flow cytometry using a focus-stack collecting microscope, Opt Lett, 37(2012)707-709.
32. Chen C-H, Hsu H-F, Chen H-R, Hsieh W-F, Non-interferometric phase retrieval using refractive index manipulation, Sci Rep, 7(2017)46223; doi:

      10.1038/srep46223 (2017).
33. Gupta A K, Fatima A, Nishchal N K, Phase imaging based on transport of intensity equation using liquid crystal variable waveplate, in Digital Holography and

      Three-Dimensional Imaging 2019, OSA Tech. Digest (2019), paper M5B.4.
34. Gupta A K, Nishchal N K, Phase retrieval using liquid crystal variable retarder based on reference-less non-interferometric technique, Optical Society of India -

      International Symposium on Optics 2018, Kanpur, India.
35. Gupta A K, Nishchal N K, A non-interferometric phase retrieval using liquid crystal spatial light modulator, The Int’l. Confer. on Fiber Optics and Photonics

      (PHOTONICS-2018), Dec. 12-15, 2018, IIT Delhi.
36. Paganin D, Mayo S C, Gureyev T E, Miller P R, Wilkins S W, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous

      object, J Microsc, 206(2002)33-40.
37. Poola P K, John R, Label-free nanoscale characterization of red blood cell structure and dynamics using single-shot transport of intensity equation, J Biomed

      Opt, 22(2017)106001; doi.org/10.1117/1.JBO.22.10.106001
38. Zuo C, Chen Q, Qu W, Asundi A, Noninterferometric single-shot quantitative phase microscopy, Opt Lett, 38(2013)3538-3541.
39. Nguyen T, Nehmetallah G, Non-interferometric tomography of phase objects using spatial light modulators, J Imaging, 2(2016)1-16.
40. Yu W, Tian X, He X, Song X, Xue L, Liu C, Wang S, Real time quantitative phase microscopy based on single-shot transport of intensity equation method,

      Appl Phys Lett, 109(2016)071112; doi.org/10.1063/1.4961383.
41. Zhou W-J, Guan X, Liu F, Yu Y, Zhang H, Poon T-C, Banerjee P P, Phase retrieval based on transport of intensity and digital holography, Appl Opt, 57(2018)

      A229-A234.
42. Gupta A K, Nishchal N K, Single-shot transport of intensity equation based phase imaging using refractive index variation, Digital Holography and Three-

      Dimensional Imaging, OSA Tech. Digest 2019, paper M5B.7.
43. Woods S C, Greenaway A H, Wavefront sensing by use of a Green’s function solution to the intensity transport equation, J Opt Soc Am A, 20(2003)508-512.
44. Pinhasi S V, Alimi R, Perelmutter L, Eliezer S, Topography retrieval using different solutions of the transport intensity equation, J Opt Soc Am A,

      27(2010)2285-2292.
45. Gureyev T E, Roberts A, Nugent K A, Phase retrieval with the transport-of-intensity equation: Matrix solution with use of Zernike polynomials, J Opt Soc Am

      A, 12(1995)1932-1941.
46. Gureyev T E, Nugent K A, Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonuniform illumination, J Opt Soc Am A,

      13(1996)1670-1682.
47. Huang L, Zuo C, Idir M, Qu W, Asundi A, Phase retrieval with the transport-of-intensity equation in an arbitrarily shaped aperture by iterative discrete cosine

      transforms, Opt Lett, 40(2015)1976-1979.
48. Volkov V, Zhu Y, Graef M D, A new symmetrized solution for phase retrieval using the transport of intensity equation, Micron, 33(2002)411-416.
49. Frank J, Altmeyer S, Wernicke G, Non-interferometric, non-iterative phase retrieval by Green’s functions, J Opt Soc Am A, 27(2010)2244-2251.
50. Zuo C, Chen Q, Asundi A, Boundary-artifact-free phase retrieval with the transport of intensity equation: Fast solution with use of discrete cosine transform,

      Opt Express, 22(2014)9220-9244.
51. Martinez-Carranza J, Falaggis K, Kozacki T, Kujawinska M, “Effect of imposed boundary conditions on the accuracy of the transport of intensity equation

      based solvers, Proc SPIE 8789, 87890N (2013); doi.org/10.1117/12.2020662
52. Paganin D, Barty A, McMahon P J, Nugent K A, Quantitative phase-amplitude microscopy. III. The effects of noise, J Microsc, 214(2004)51-61.
53. Zuo C, Chen Q, Yu Y, Asundi A, Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter-theory and applications, Opt Express,

      21(2013)5346-5362.
54. Cong W, Wang G, Higher-order phase shift reconstruction approach: Higher-order phase shift reconstruction approach, Med Phys, 37(2010)5238-5242.
55. Waller L, Tian L, Barbastathis G, Transport of intensity phase-amplitude imaging with higher order intensity derivatives, Opt Express, 18(2010)12552-12561.
56. Bie R, Yuan X H, Zhao M, Zhang L, Method for estimating the axial intensity derivative in the TIE with higher order intensity derivatives and noise

      suppression, Opt Express, 20(2012)8186-8191.
57. Soto M, Acosta E, Improved phase imaging from intensity measurements in multiple planes, Appl Opt, 46(2007) 7978-7981.
58. Medhi B, Hegde G M, Reddy K J, Roy D, Vasu R M, Shock-wave imaging by density recovery from intensity measurements, Appl Opt, 57(2018)4297-4308.
59. Allen L, Oxley M, Phase retrieval from series of images obtained by defocus variation, Opt Commun, 199(2001) 65-75.
60. Schmalz J A, Gureyev T E, Paganin D M, Pavlov K M, Phase retrieval using radiation and matter-wave fields: Validity of Teague’s method for solution of the

      transport-of-intensity equation, Phys Rev A, 84(2011)023808; doi.org/10.1103/PhysRevA.84.023808
61. Zuo C, Chen Q, Huang L, Asundi A, Phase discrepancy analysis and compensation for fast Fourier transform based solution of the transport of intensity

      equation, Opt Express, 22(2014)17172-17186.
62. Ferrari J A, Ayubi G A, Flores J L, Perciante C D, Transport of intensity equation: Validity limits of the usually accepted solution, Opt Commun,

      318(2014)133-136.

Transport of intensity equation for phase imaging: A review.pdf
Alok K Gupta and Naveen K Nishchal

____________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                       Vol. 28 Nos 10-12, 2019, 787-793


Performance analysis of an improved target detection technique based
on quadratic correlation filters for surveillance applications

Arun Kumar and Unnikrishnan Gopinathan
Instruments Research and Development Establishment, Raipur Road, Dehradun-248 008, India
This article is dedicated to Prof Kehar Singh for his contributions to Optics & Photonics
___________________________________________________________________________________________________________________________________

An improved target detection method based on Quadratic Correlation Filters (QCF) is proposed for surveillance application to detect the target amid the clutter in visible imagery. The proposed improvement helps in reducing the false alarm rate thereby improving the performance. The performance evaluation of the proposed method is carried out on the frames of a video sequence by varying three parameters – target window size, variance check value, and positive filter threshold value. © Anita Publications. All rights reserved.
Keywords: Target detection, Recognition, Quadratic correlation filter, Variance, Target recognition performance analysis.

References
1. Duda R O, Hart P E, Stork D G, Pattern Classification, (John Wiley & Sons),2001.
2. Vijaya Kumar BVK, Mahalanobis A, Juday R D, Correlation Pattern Recognition, (Cambridge Press, New York), 2005.
3. Duda R O, Hart P E, Pattern Classification and Scene Analysis, (John Wiley &Sons, New York), 1973.
4. Sims S R F, Mahalanobis A, Performance evaluation of quadratic correlation filters for target detection and discrimination in infrared imagery, Opt 

    Eng, 43(2004)1705-1711.
5. Vijaya Kumar B V K, Tutorial survey of composite filter designs for optical correlators, App Opt, 31(1992)4773-4801.
6. Vander Lugt A, Signal detection by spatial complex filtering, IEEE Trans Inf Theory, 10(1964)139-145.
7. Mahalanobis A, Vijaya Kumar BVK, Casasent D P, Minimum average correlation energy filters, Appl Opt, 26(1987)3633-3640.
8. Mahalanobis A, Vijaya Kumar BVK, Sims S R F, Epperson J, Unconstrained correlation filters, Appl Opt, 33(1994)3751-3759.
9. Gardner W A, IEEE Transactions on Communications, 28(1980)807-816.
10. Alkanhal M, Vijaya Kumar B V K, Polynomial distance classifier correlation filter for pattern recognition, Appl Opt, 42(2003)4688-4708.
11. Picinbono B, Quadratic filters in Proc IEEE ICASSP, (Paris, France), May 1982, pp. 298-301.
12. Sicuranza G L, Quadratic filters for signal processing, Proc IEEE, 80(1992)1263-1285.
13. Mahalanobis A, Muise R, Stanfill S R, Nevel A Van, Design and application of quadratic correlation filters for target detection, Appl Opt, 40(2004)837-850.
14. Gheen G, Optimal distortion-invariant quadratic filters, Proc SPIE, 1564(1991)112-120; doi.org/10.1117/12.49701.
15. Kerekes R A, Vijaya Kumar B V K, Selecting a composite correlation filter design: a survey and comparative study, Opt Eng, 47(2008)067202; doi.org/10.1117

      /1.2943217.
16. Gheen G, A general class of invariant quadratic filters for optical pattern recognition, Proc SPIE, 2237(1994)19-26.
17. Mahalanobis A, Muise R, Stanfill S R, Quadratic correlation filter design methodology for target detection and surveillance applications, Appl Opt,

      43(2004)5198-5205.
18. Huo X, Elad M, Flesia A G, Muise R R, Stanfill S R, Friedman J, Popescu B, Chen J, Mahalanobis A, Donoho D L, Optimal reduced-rank quadratic classifiers

      using the Fukunaga–Koontz transform with applications to automated target recognition, Automatic Target Recognition XIII, F A Sadjadi (ed), Proc SPIE,

      5094(2003)59-72.
19. Vijaya Kumar B V K, Casasent D, Mahalanobis A, Distance-classifier correlation filters for multiclass target recognition, Appl Opt, 35(1996)3127-3133.
20. Vijaya Kumar B V K, Brasher J, Hester C, Nonlinear decision boundaries using complex constraints in synthetic discriminant function filters, Proc of SPIE,

      2026(1993)88-99.
21. Vijaya Kumar B V K, Hassebrook L, Performance measures for correlation filters, Appl Opt, 29(1990)2997-3006.
22. Vijaya Kumar B V K, Mahalanobis A, Recent advances in composite correlation filter designs, Asian J Phys, 8(1999)407-420.
23. Mikhael W B, Ragothaman P, Muise R, Mahalanobis A, An Efficient Quadratic Correlation Filter for Automatic Target Recognition, Proc of SPIE, Volume

      6566, 65660W, Automatic Target Recognition XVII, Firooz A. Sadjadi, E Defense and Security Symposium, Orlando, Florida, April 17-22, 2007.
24. Muise R, Mahalanobis A, Mohapatra R, Li X, Han D, Mikhael W, Constrained quadratic correlation filters for target detection, Appl Opt, 43(2004)304-314.
25. Horner J L, Gianino P D, Applying the phase-only filter concept to the synthetic discriminant function correlation filter, App Opt, 24(1985)851-855.
26. Van Nevel A, Mahalanobis A, Comparative study of maximum average correlation height filter variants using ladder imagery, Opt Eng, 42(2004)541-550.
27. Kerekes J, Receiver Operating Characteristic Curve Confidence Intervals and Regions, IEEE Geosci Remote Sens Lett, 5(2008)251-255.

performanceanalysisofanimprovedtargetdetectiontechniquebasedonquadraticcorrelationfiltersforsurveillanceapplications.pdf
Enter file download description here

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 795-812


Polarized light in biophotonics: enabling technology towards tissue characterization, diagnosis and imaging

S Chandel1, S Saha1,2 and N Ghosh1
1Indian Institute of Science Education and Research, Kolkata,741 246, W B, India
2Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

In this article, we have addressed the current status of optical polarimetry for biomedical assessment. Polarimetric imaging and spectroscopy has already shown considerable promise in detecting various diseases e.g precancerous changes, but it still remains to be rigorously investigated. Owing to their immense potential for in vivo tissue characterization and diagnosis, polarization incorporated experimental system are improvising rapidly to be utilized for advanced biomedical applications. Although a simplified version of some of these systems have been used in clinics but there are still formidable challenges ahead, both technical challenges and challenges in analysis, interpretation, quantification of the tissue polarimetry signal and finally relating it to the actual tissue morphology. Here, we have discussed with illustrative examples that quantitative polarimetric measurements can provide morphological, biochemical and functional information of potential biomedical importance. These results address some of the outstanding challenges in biomedical polarimetry and demonstrate the promise of polarimetry as a non-invasive optical tool for tissue characterization and diagnosis. © Anita Publications. All rights reserved.
Keywords: Polarization, Mueller Matrix, Fluorescence, Optical diagnosis

References
    1.    Tuchin V V, Tissue optics: light scattering methods and instruments for medical diagnosis, (SPIE press, Bellingham), 2007.
    2.    Ghosh N,. Vitkin I A, Tissue polarimetry: concepts, challenges, applications, and outlook, J Biomed Opt, 16(2011)   110801; doi.org/10.1117/1.3652896
    3.    Schmitt J M, Optical coherence tomography (OCT): A review, IEEE Journal of selected topics in quantum electronics, 5(1999)1205-1215.
    4.    Hebden G J, Arridge S R, Recent advances in diffuse optical imaging, Physics in Medicine & Biology, 50(2005) R1; doi.org/10.1088/0031-9155/50/4/R01.
    5.    Richards-Kortum R, Sevick-Muraca E, Quantitative optical spectroscopy for tissue diagnosis, Annu Rev Phys Chem, 47(1996)555-606.
    6.    Ramanujam N, Fluorescence spectroscopy of neoplastic and non-neoplastic tissues, Neoplasia, 2(2000)89-117.
    7.    Mahadevan-Jansen A, Richards-Kortum R R, Raman spectroscopy for the detection of cancers and precancers, J Biomed Opt, 1(1996)31-70.

           doi.org/10.1117/12.227815
    8.    Wang L V, Coté G L, Jacques S L, Special Section Guest Editorial, J Biomed Opt, 7(2002)278-278.
    9.    Ghosh N, Wood M, Vitkin A, Polarized light assessment of complex turbid media such as biological tissues using Mueller matrix decomposition, Handbook

            of photonics for biomedical Science, (CRC Press), 2010, pp 253-282.
    10.   Kliger D S, Lewis J W, Polarized light in optics and spectroscopy, (Elsevier), 2012.
    11.   Goldstein D H, Polarized Light, (CRC Press,Taylor & Francis Group, Boca Raton, London, New York), 2016.
    12.   Gupta S D, Ghosh N, Banerjee A, Wave Optics: Basic Concepts and Contemporary Trends, (CRC Press, Taylor & Francis Group, Boca Raton, London,

            New York), 2015.
    13.   Bickel W S, Bailey W M, Stokes vectors, Mueller matrices, and polarized scattered light, Am J Phys, 53(1985)468-478.
    14.   Chipman R A, Polarimetry, Handbook of Optics, Vol II, (McGraw-Hill, INC),1995, chapter 22, pp 22.1-22.37.
    15.   Lu S.-Y, Chipman R A, Interpretation of Mueller matrices based on polar decomposition, J Opt Soc Am A, 13(1996)1106-1113.
    16.   Ossikovski R, Martino A De, Guyot S, Forward and reverse product decompositions of depolarizing Mueller matrices, Opt Lett, 32(2007)689-691.
    17.   Ossikovski R, “Differential matrix formalism for depolarizing anisotropic media, Opt Lett, 36(2011)2330-2332.
    18.   S. Kumar S, Harsh Purwar H, Ossikovski R, Vitkin I A, Ghosh N, “Comparative study of differential matrix and extended polar decomposition formalisms

            for polarimetric characterization of complex tissue-like turbid media,” J Biomed Opt, 17(2012)105006; doi.org/10.1117/1.JBO.17.10.105006
    19.   Azzam R, “Propagation of partially polarized light through anisotropic media with or without depolarization: a differential 4× 4 matrix calculus, J Opt Soc

            Am A, 68(1978)1756-1767.
    20.   Ghosh N, Banerjee A, Soni J, Turbid medium polarimetry in biomedical imaging and diagnosis, The European Physical Journal: Applied Physics,

            54(2011)30001; doi.org/10.1051/epjap/2011110017
    21.   Smith M H, Optimization of a dual-rotating-retarder Mueller matrix polarimeter, Appl Opt, 41(2002)2488-2493.
    22.   Dubreuil M, Rivet S, Jeune B Le, J Cariou J, Snapshot Mueller matrix polarimeter by wavelength polarization coding, Opt Express, 15(2007)13660-13668.
    23.   Baba J S, Chung J R, DeLaughter A H, Cameron B D, Cote G L, Development and calibration of an automated Mueller matrix polarization imaging

            system, J Biomed Opt, 7(2002)341-349.
    24.   Compain E, Poirier S, Drevillon B, General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix

            ellipsometers, Appl Opt, 38(1999)3490-3502.
    25.   Laude-Boulesteix B, Martino A D, Drévillon B, Schwartz L, Mueller polarimetric imaging system with liquid crystals, Appl Opt, 43(2004)2824-2832.
    26.   Jacques S L, Ramella-Roman J C, Lee K, Imaging skin pathology with polarized light, J Biomed Opt, 7(2002)329-340.
    27.   Soni J, Purwar H, Lakhotia H, Chandel S, Banerjee C, Kumar U, Ghosh N, Quantitative fluorescence and elastic scattering tissue polarimetry using an

            Eigenvalue calibrated spectroscopic Mueller matrix system, Opt Express, 21(2013)15475-15489.
    28.   Jacques S L, Roman J R, Lee K, Imaging superficial tissues with polarized light, Lasers in surgery and medicine, 26(2000)119-129.
    29.   Demos S G, Radousky H B, Alfano R R, Deep subsurface imaging in tissues using spectral and polarization filtering, Opt Express, 7(2000)23-28.
    30.   Sridhar S, Silva A Da, Enhanced contrast and depth resolution in polarization imaging using elliptically polarized light, J Biomed Opt, 21(2016)071107;

            doi.org/10.1117/1.JBO.21.7.071107.
    31.   Schmitt J M, Gandjbakhche A H, Bonner R F, Use of polarized light to discriminate short path photons in a multiply scattering medium, Appl Opt,

            31(1992)6535-6546.
    32.   Ghosh N, Patel H, Gupta P, Depolarization of light in tissue phantoms-effect of a distribution in the size of scatterers, Opt Express, 11(2003)2198-2205.
    33.   Morgan S P, Stockford I M, Surface-reflection elimination in polarization imaging of superficial tissue, Opt Lett, 28(2003)114-116.
    34.   Sviridov P, Chernomordik V V, Hassan M, Boccara A C,Russo A, Smith P D, Gandjbakhche A H, Enhancement of hidden structures of early skin fibrosis 

            using polarization degree patterns and Pearson correlation analysis, J Biomed Opt, 10(2005)051706; doi.org/10.1117/1.2073727.
    35.   Layden D, Ghosh N, Vitkin A, Quantitative polarimetry for tissue characterization and diagnosis, Advanced Biophotonics: Tissue Optical Sectioning, (eds)

            Wang R K, Tuchin VV, (Taylor & Francis),2016, pp 73-108.
    36.   Ghosh N, Wood M F G, Li S H, Weisel R D, Wilson B C, Li R-K, Vitkin I A, Mueller matrix decomposition for polarized light assessment of biological 

            tissues, J Biophotonics, 2(2009)145-156.
    37.   Wood M F G, Ghosh N, Wallenburg M A, Li Shu-Hong, Weisel Richard D, Wilson B C, Li Ren-Ke, Vitkin I A, Polarization birefringence measurements

             for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues, J Biomed Opt, 15(2010)047009; doi.org/10.1117

             /1.3469844
    38.    Li S-H, Sun Z, Guo L, Han M, Wood MFG, Ghosh N, Vitkin I A Weisel R D, Li R K, Elastin over expression by cell-based gene therapy preserves matrix

             and prevents cardiac dilation, Journal of Cellular and Molecular Medicine, 16(2012)2429-2439.
    39.    Lakowicz J R, Principles of fluorescence spectroscopy, (Springer Science & Business Media), 2013.
    40.    Arteaga O, Nichols S, Kahr B, Mueller matrices in fluorescence scattering, Opt Lett, 37(2012)2835-2837.
    41.    Jagtap J, Chandel S, Das N, Soni J, Chatterjee S, Pradhan A, Ghosh N, Quantitative Mueller matrix fluorescence spectroscopy for precancer detection, Opt

             Lett, 39(2014)243-246.
    42.    Satapathi S, Soni J, Ghosh N, Fluorescent Mueller matrix analysis of a highly scattering turbid media, Appl Phys Lett, 104(2014)131902; doi.org/10.1063

             /1.4869475
    43.    Saha S, Soni J, Chandel S, Ghosh N, Kumar U, Probing intrinsic anisotropies of fluorescence: Mueller Matrix Approach, J Biomed Opt, 20(2015)085005;

             doi.org/10.1117/1.JBO.20.8.085005
    44.    Das N, Chatterjee S, Soni J, Jagtap J, Pradhan A, Sengupta T K, Panigrahi P K, Vitkin I A, Ghosh N, Probing multifractality in tissue refractive index:

             prospects for precancer detection, Opt Lett, 38(2013)211-213.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 813-824

 

Qualitative and quantitative assessment of emotions from image sequences using optical flow magnitude

Shivangi Anthwal and Dinesh Ganotra
Department of Applied Science and Humanities,
Indira Gandhi Delhi Technical University for Women, Delhi-110 006, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

Facial expressions provide pertinent cues helpful in deducing one’s emotional state. Prospective applications of automated cognition of emotions through facial expressions in smart environments has engendered a surge of interest in the last decade. In this work, an approach is presented where facial expressions are characterized by analyzing the motion pattern of facial features arising when a neutral face transforms into an emotional face. For qualitative analysis, emotional patterns are categorized into six discrete basic emotion classes with descriptors giving the spatial distribution of the magnitude of dense optical flow across the entire image domain between emotional and neutral facial images. Classification scheme based on k-nearest neighbor has been employed for categorization. Promising results from comparative analysis of the proposed method with pre-trained Microsoft face application programming interface on the sequences derived from Extended Cohn Kanade database and Karolinska Directed Emotional Faces database demonstrate the efficiency of the flow magnitude based descriptor. For quantitative assessment of emotions, intensity scores are computed by finding the root mean square deviation between reference flow matrix and the flow matrix corresponding to input frame. The computed intensity scores are well in agreement with the visually apparent emotional intensity levels depicted by the expression. © Anita Publications. All rights reserved.
Keywords: Optical flow, Emotion analysis, Facial expression recognition, Emotional intensity.

References
    1.    Mehrabian A, Silent Messages,1st Edn, (Wadsworth Publishing Company, Inc. Belmont, California), 1971, p 44.   
    2.    Dai Y, Shibata Y, Ishii T, Hashimoto K, Katamachi K, Noguchi K, Kakizaki, N, Cai D, An associate memory model of facial expressions and its application

           in facial expression recognition of patients on bed, Proc IEEE International Conference on Multimedia and Expo, (2001)591-594.
    3.    Quintana M, Menendez J M, Alvarez F, Lopez J P, Improving retail efficiency through sensing technologies: A survey, Pattern Recognit Lett, 81(2016)3-10.
    4.    Huang D, Torre F De la, Bilinear Kernel Reduced Rank Regression for Facial Expression Synthesis, Proc European Conference on Computer Vision,

           (2010)364-377.
    5.    Lucey P, Cohn J, Lucey S, Matthews I, Sridharan S, Prkachin K, Automatically detecting pain using facial actions, Proc 3rd International Conference on 

           Affective Computing and Intelligent Interaction, (2009)1-8.
    6.    Ekman P, An argument for basic emotions, Cognition and Emotion, 6(1992)169-200.
    7.    Matsumoto D, Willingham B, Spontaneous Facial Expressions of Emotion of Congenitally and Noncongenitally Blind Individuals, J Pers Soc Psychol, 

           96(2009)1-10.
    8.    Lucey P, Cohn J F, Kanade T, Saragih J, Ambadar Z, Matthews I, The Extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and

           emotion-specified expression, Proc Computer Vision and Pattern Recognition Workshops, San Francisco, CA, USA. 13-18 June, (2010)94-101.
    9.    Ekman P, Friesen WV, The Facial Action Coding System, (Consulting Psychologists Press, San Francisco, CA), 1978.
    10.  Lien J J, Kanade T, CohnJ, Li C-C, Automated Facial Expression Recognition Based on FACS Action Units, Proc. Third IEEE International Conference on

           Automatic Face and Gesture Recognition, (1998)390-395.
    11.  Liu M, Li S, Shan S, Chen X, AU-inspired Deep networks for facial expression feature learning, Neurocomputing, 159(2015)126-136.
    12.  Happy S L, Routray A, Robust facial expression classification using shape and appearance features, 8th International Conference on Advances in Pattern

           Recognition (ICAPR), 4-7 Jan 2015, Kolkata, India, (2015)
    13.  Salmam F Z, Madani A, Kissi M, Fusing multi-stream deep neural networks for facial expression recognition, Signal Image and Video Processing,

           13(2019)609-616.
    14.    Moore S, Bowden R, Local binary patterns for multi-view facial expression recognition, Comput Vis Image Und, 115(2011)541-558.
    15.    Berretti S, Del Bimbo A, Pala P, Automatic facial expression recognition in real-time from dynamic sequences of 3D face scans, Visual Comput, 

             29(2013)1333-1350.
    16.    Anthwal S, Ganotra D, An overview of optical flow-based approaches for motion segmentation, Imaging Sci J, 67(2019)284-294.
    17.    Mase K, Recognition of Facial Expression from Optical Flow, IEICE Trans Inf & Syst, E74(1991)3474-3483.
    18.    Essa I A, Pentland A,Coding, analysis, interpretation, recognition of facial expressions, IEEE Trans Pattern Anal Mach, 19(1997)757-763.
    19.    Yacoob Y, Davis LS, Recognizing Human Facial Expressions from Long Image Sequences Using Optical Flow, IEEE Trans Pattern Anal Mach,

             18(1996)636-642.
    20.    Shin G, Chun J, Spatio-temporal Facial Expression Recognition Using Optical Flow and HMM, Software Engineering, Artificial Intelligence, Networking

             and Parallel/Distributed Computing, Studies in Computational Intelligence, 149(2008)27-38.
    21.    Fan X, Tjahjadi T, A Spatial-Temporal Framework based on Histogram of Gradients and Optical Flow for Facial Expression Recognition in Video

             Sequences, Pattern Recognit, 48(2015)3407-3416.
    22.    Eskil M T, Benli K S, Facial expression recognition based on anatomy, Comput Vis Image Underst, 119(2014)1-14.
    23.    Niese R, Al Hamadi A, Farag A, Neumann H, Michaelis B, Facial expression recognition based on geometric and optical flow features in colour image

             sequences, IET Computer Vision, 6(2012)79-89;doi. 10.1049/iet-cvi.2011.0064
    24.    Sun N, Li Q, Huan R, Liu J, Han G,“Deep spatial-temporal feature fusion for facial expression recognition in static images, Pattern Recognit Lett,

             119(2019)49-61.   
    25.    Calvo MG, Fernández-Martín A, Recio G, Lundqvist D, Human Observers and Automated Assessment of Dynamic Emotional Facial Expressions: KDEF-

             dyn Database Validation, Frontiers in Psychology, 9(2018), Article 2052.
    26.    Viola P, Jones M, Rapid object detection using a boosted cascade of simple features, Proc IEEE Computer Society Conference on Computer Vision and

             Pattern Recognition, 1(2001)I-I. 
    27.    Brox T, Bruhn A, Papenberg N, Weickert J, (2004) High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla T, Matas J (eds),

             Computer Vision - ECCV 2004. ECCV 2004. Lecture Notes in Computer Science, vol 3024. Springer, Berlin, Heidelberg; doi.org/10.1007

             /978-3-540-24673-2_3   
    28.    Altman N S, An introduction to kernel and nearest-neighbour non-parametric regression, Am Stat, 46(1992)175-185.  
    29.    https://aidemos.microsoft.com/face-recognition
    30.    Shcherbakov M V, Brebels A, Shcherbakova N L,Tyukov A P, Janovsky T A, Kamaev V A, A Survey of Forecast Error Measures, World Appl Sci J,

              24(2013)171-176.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 857-866

 

Speckle-free common-path digital interference phase microscopy using single element

interferometers with partially spatially coherent light source

Veena Singh, Shilpa Tayal and Dalip Singh Mehta
Bio-photonics and Green Photonics Laboratory, Department of Physics,
Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110 016, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

Digital interferometeric phase microscopy (DIPM) is one of the most promising techniques which helps in the visualization and measurement of transparent biological cells. Mostly, non common-path DIPM is employed for experimentation compared to common path interferometers, but they suffer from the drawback that they are temporally unstable compared to their counterparts. In addition to poor temporal stability, high spatial phase sensitivity is also an essential requirement in the accurate measurement of phase. Lasers are the most commonly employed light source in DIPM, but due to their high coherence properties they lead to the generation of speckles and spurious fringes,which degrades the quality of measurement. In this paper, we report the development of speckle-free common path DIPM systems using single element interferometers, which has high spatial phase sensitivity along with high temporal stability. The DIPM systems implemented uses partially spatially coherent light source to increase the spatial phase sensitivity, and their common path nature helps in the attainment of high temporal stability. Two common path modalities have been developed one using lateral shearing interferometer while another using Fresnel biprism. The experiments are carried out on industrial as well as biological specimens. Results of temporal stability, spatial phase sensivity, and reconstructed phase maps are presented. © Anita Publications. All rights reserved.
Keywords: Phase, Common-path interferometer, Microscopy, Coherence.

References
    1.    Rostykus M, Soulez F, Unser M,  Moser C, Compact in-line lensfree digital holographic microscope, Methods, 136(2018)17-23.
    2.    Zernike F, Phase contrast, a new method for the microscopic observation of transparent objects, Physica, 9(1942) 686-698.
    3.    Myung K K, Principles and techniques of digital holographic microscopy, SPIE (Reviews), 1(2010)018005; doi.org/10.1117/6.0000006.   
    4.    Shaked N T, Satterwhite L L, Rinehart M T, Wax A, Quantitative Analysis of Biological Cells Using Digital Holographic Microscopy, Holography, Research

           and Technologies, (Intech Open), 2011, 219; doi: 10.5772/15122.
    5.    Ahmad A, Dubey V, Singh V, Butola A, Joshi T, Mehta D S, Reduction of spatial phase noise in the laser based digital holographic microscopy for the

           quantitative phase measurement of biological cells, Proc SPIE-OSA, 10414(2017)104140H; doi.org/10.1117/12.2287908.
    6.    Yu L, Mohanty S, Zhang J, Genc S, Kim M K, Berns M W, Chen Z, Digital holographic microscopy for quantitative cell dynamic evaluation during laser

           microsurgery, Opt Express, 17(2009)12031-12038.
    7.    Kemper B , Bauwens A , Vollmer A , Ketelhut S , Langehanenberg P, Müthing J, Karch H, Bally G V, Label-free quantitative cell division monitoring of

           endothelial cells by digital holographic microscopy, J Biomed Opt, 15 (2010)036009; doi.org/10.1117/1.3431712.
    8.    Singh V, Tayal V, Mehta D S, Highly stable wide-field common path digital holographic microscope based on a Fresnel biprism interferometer, OSA

           Continuum, 1(2108)48, doi.org/10.1364/OSAC.1.000048.
    9.    Shan M, Hao B, Zhong Z, Diao M, Zhang Y, Parallel two-step spatial carrier phase-shifting common-path interferometer with a Ronchi grating outside the

           Fourier plane, Opt Express, 21(2013)2126-2132.
    10.  Mahajan S, Trivedi V, Vora P, Chhaniwal V, Javidi B, Anand A, Highly stable digital holographic microscope using Sagnac interferometer, Opt Lett,

           40(2015)3743-3746.
    11.  Shaked N T, Quantitative phase microscopy of biological samples using a portable interferometer, Opt Lett, 37(2012)2016-2018.
    12.  Yuanbo D, Chu D, Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays, Scientific

           reports, 7(2017)5893; doi.org/10.1038/s41598-017-06215-x.
    13.  Singh V, Joshi R, Tayal S, Mehta D S, Speckle-free common-path quantitative phase imaging with high temporal phase stability using a partially spatially

           coherent multi-spectral light source, Lasers Physics Letter, 16(2019)025601; doi.org/10.1088/1612-202X/aaf179.
    14.  Goodman Joseph W, Speckle Phenomena in Optics: Theory and Applications, (Roberts and Company Publishers), 2007.
    15.  Ahmad A, Dubey V, Singh G, Singh V, Mehta D S, Quantitative phase imaging of biological cells using spatially low and temporally high coherent light

           source, Opt Lett, 41(2016 )1554-1557.
    16.  Mehta D S, Naik D N, Singh R K, Takeda M, Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular

           diversity, Appl Opt, 51(2012)1894-1904.
    17.  Bianco V, Memmolo P, Leo M, Montresor S, Distante C, Paturzo M, Picart P, Javidi B, Ferraro P, Strategies for reducing speckle noise in digital

           holography, Light: Science & Applications,7(2018)48; doi.org/10.1038/s41377-018-0050-9.
    18.  Song J B, Lee Y W, Lee I W, Lee Y H, Simple phase-shifting method in a wedge-plate lateral-shearing interferometer, Appl Opt, 43(2004)3989-3992.
    19.  Dai X, Yun H, Shao X, Wang Y, Zhang D, Yang F, HeX, Thermal residual stress evaluation based on phase-shift lateral shearing interferometry, Optics and

           Lasers in Engineering, 105(2018)182-187.
    20.  Tayal S, Usmani K, Singh V, Dubey V, Mehta D S, Speckle-free quantitative phase and amplitude imaging using common-path lateral shearing interference

            microscope with pseudo-thermal light source illumination, Optik, 180(2019)991-996.
    21.   Singh A S G, Anand A, Leitgeb R A, Javidi B, Lateral shearing digital holographic imaging of small biological specimens, Opt

            Express, 20(2012)23617-23622.
    22.   Seo K B, Shin S H, Optimal modified lateral shearing interferometer for submicro-defects measurement of transparent objects, Appl

            Opt, 56(2017)7504-7511.
    23.   Vora P, Trivedi V, Mahajan S,  Patel N R, Joglekar M,  Chhaniwal V,  Moradi A,  Javidi B, Anand A, Wide field of view common-path lateral-shearing

             digital holographic interference microscope, J Biomed Opt, 22(2017)126001; doi.org/10.1117/1.JBO.22.12.126001.

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 867-875


Generation of Stokes vortices in three, four and six circularly polarized beam interference

Sushanta Kumar Pal, Sarvesh Bansal and P Senthilkumaran
Department of Physics,
Indian Institute of Technology Delhi, New Delhi 110016, India

This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

In this article we have shown generation of Stokes fields vortices from the interference of three, four, and six polarization engineered circularly polarized vector beams. In addition to this, the interference method is extended to phase and polarization engineered six circularly polarized beams for realizing two interesting lattice fields embedded with all three Stokes vortices simultaneously. We believe that such polarization lattice fields may bring up novel concept of structured polarization illumination methods in super resolution microscopy.© Anita Publications. All rights reserved.
Keywords: Interference, Polarization, Optical Vortices, Polarization Singularity.

References
    1.    Hajnal J V, Singularities in the transverse fields of electromagnetic waves. I. theory, Proc R Soc London A, 414 (1987)433-446.
    2.    Freund I, Polarization singularity indices in Gaussian laser beams, Opt Commun, 201(2002)251-270.
    3.    Dennis M R, Polarization singularities in paraxial vector fields: morphology and statistics, Opt Commun, 213(2002)201-221.
    4.    Freund I, Soskin M S, Mokhun A I, Elliptic critical points in paraxial optical fields, Opt Commun, 208(2002)223-253.
    5.    Senthilkumaran P, Singularities in Physics and Engineering, (IOP Publishing), 2018.
    6.    Goldstein D, Polarized Light, (CRC Press), 2011.
    7.    Born M, Wolf E, Principle of Optics, (Cambridge University Press), 1999.
    8.    Freund I, Mokhun A I, Soskin M S, Angelsky O V, Mokhun I I, Stokes singularity relations, Opt Lett, 27(2002)545-547.
    9.    Freund I, Poincaré vortices, Opt Lett, 26 (2001)1996-1998.
    10.  Angelsky O, Mokhun A, Mokhun I, Soskin M S, Opt Commun, 207(2002)57-65.
   11.   Masajada J, Dubik B, Optical vortex generation by three plane wave interference, The relationship between topological characteristics of component vortices

           and polarization singularities, Opt Commun, 198(2001)21-27.
   12.   Vyas S, Senthilkumaran P, Vortex array generation by interference of spherical waves, Appl Opt, 46(2007)7862-7867.    
   13.   Vyas S, Senthilkumaran P, Interferometric optical vortex array generator, Appl Opt, 46(2007)2893-2898.
   14.   Ghai D P, Vyas S, Senthilkumaran P, Sirohi R S, Detection of Phase singularity using a lateral shear interferometer, Opt and Lasers in Engg,

           46(2008)419-423.    
   15.   Xavier J, Vyas S, Senthilkumaran P, Denz C, Joseph J, Sculptured 3D twister superlattices embedded with tunable vortex spirals, Opt Lett,    

           36(2011)3512-3514.
   16.   Senthilkumaran P, Masajada J, Sato S, Interferometry with vortices, International J Opt, 2012(2012)1-18.
   17.   Xavier J, Vyas S, Senthilkumaran P, Joseph J, Complex 3D vortex lattice formation by phase engineered multiple beam interference, Int J Opt,

           2012(2012)1-9.
   18.   Xavier J, Vyas S, Senthilkumaran P, Joseph J, Tailored complex 3D photonic vortex lattice structures, Appl Opt, 51(2012)1872-1878.    
   19.   Ye D, Peng X, Zhao Q, Chen Y, Numerical generation of a polarization singularity array with modulated amplitude and phase), J Opt Soc Am A,

            33(2016)1705-1709.
   20.   Kurzynowski P, Woźniak W A, Zdunek M, Borwińska M, Singularities of interference of three waves with different polarization states, Opt Express,

           20(2012)26755-26765.
   21.   Kurzynowski P, Wozniak W A, Borwinska M, Regular lattices of polarization singularities: their generation and properties, J Opt, 12(2012)1-8.
   22.   Pang X, Gbur G, Visser T D, Cycle of phase, coherence and polarization singularities in Young's three-pinhole experiment, Opt Express,

           23(2015)34093-34108.
   23.   Schoonover R W, Visser T D, Creating polarization singularities with an N-pinhole interferometer, Phys Rev A, 79 (2009)1-7.
   24.    Yu R, Xin Y, Zhao Q, Chen Y, Song Q, Array of polarization singularities in interference of three waves, J Opt Soc Am A, 30(2013)2556-2560.
   25.    Pal S K, Senthilkumaran P, Cultivation of lemon fields, Opt Express, 24(2016)28008-28013.
   26.    Pal S K, Ruchi, Senthilkumaran P, C-point and V-point singularity lattice formation and index sign conversion methods, Opt Commun, 393(2017)156-168.
   27.    Ruchi, Pal S K, Senthilkumaran P, Generation of V-point polarization singularity lattices, Opt Express, 25(2017)19326-19331.
   28.    Pal S K, Senthilkumaran P, Lattice of C-points at intensity nulls, Opt Lett, 43(2018)1259-1262.
   29.    Pal S K, Senthilkumaran P, Phase engineering methods in polarization singularity lattice generation, OSA Continuum, 1(2018)193-199.
   30.    Pal S K, Senthilkumaran P, Synthesis of Stokes singularities, Opt Lett, 44(2019)130-133.
   31.    Arora G, Pal S K, Senthilkumaran P, Spatially varying lattice of C-points, OSA Continuum, 2(2019)416-423.
   32.    Pal S K, Senthilkumaran P, Hexagonal vector field of polarization singularities with gradient basis structure, Opt Lett, 44(2019)2093-2096.
   33.    Pal S K, Senthilkumaran P, Generation of orthogonal lattice fields, J Opt Soc Am A, 36(2019)853-858.
   34.    Machavariani G, Lumer Y, Moshe I, Meir A, Jackel S, Spatially variable retardation plate for efficient generation of radially and azimuthally polarized

            beams, Opt Commun, 281(2008)732-738.
   35.    Xin J, Lou X, Zhou Z, Dong M, Zhu L, Generation of polarization vortex beams by segmented quarter-wave plates, Chinese Opt Lett, 14(2016)070501.

Generation of Stokes vortices in three, four and six circularly polarized beam interference.pdf
Sushanta Kumar Pal, Sarvesh Bansal and P Senthilkumaran

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 877-889


Guided wave photonics for light sources, sensors and passive components at mid-IR

Babita Bakshi (nee Kumari)1, Ajanta Barh2, Somnath Ghosh3Ravendra K Varshney1 and Bishnu P Pal4

1Department of Physic, Indian Institute of Technology Delhi, Dehli-110 016 India

2Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland

3Department of Physics, Indian Institute of Technology, Jodhpur-342 037 Rajasthan, India

4Mahindra École Centrale, Department of Physics, Hyderabad-500,043, India

This article is dedicated to Prof Kehar Singh for his contributions to Optics & Photonics

___________________________________________________________________________________________________________________________________

Guided wave photonics has emerged as a versatile mid-infrared (mid-IR) wavelength platform and option for realising light sources, sensors and components in the technologically important wavelength window of 2-25 μm. Portions of this spectral band represent molecular fingerprint regimes of certain molecules’ characteristic signature absorption wavelengths, which find extensive applications in pollution detection and bio-chemical-medical research. Mid-IR waveband is also attractive for defense, homeland security, sensing of noxious gases, astronomy, spectroscopy, LIDAR, optical tomography, etc. In this review paper, we present our own research in recent years in the context of highlighting role of guided wave photonics for realizing light sources, sensors, and polarization components for use at mid-IR spectral domain.© Anita Publications. All rights reserved.
Keywords: Optical waveguides, Optical fibers, Nonlinear optics, Four wave mixing, Silicon photonics sensors and components

References
1. Sanghera J S, Aggarwal I D, Active and passive chalcogenide glass optical fibers for IR applications: a review, J Non-Cryst Solids, 256-257(1999)6-16.
2. Rolfe P, In-vivo near infrared spectroscopy, Annu Rev Biomed Eng, 2(2000)715-754.
3. Serebryakov V A, Boĭko É V, Petrishchev N N, Yan A V, Medical applications of mid-IR lasers, problems and prospects, J Opt Technol, 7(2010)6-17.
4. Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K, Windeler R S, Ultra-high-resolution coherence tomography using continuum 

    generation in an air-silica microstructured optical fiber, Opt Lett, 26(2001)608-610.
5. Jackson S D, Towards high power mid-infrared emission from a fibre laser, Nat Photonics, 6(2012)423-431.
6. Pile D, Horiuchi N, Won R, Graydon O, Extending opportunities, Nat Photonics, 6(2012)407; doi:10.1038/nphoton.2012.149
7. Soref R A, Emelett S J, Buchwald W R, Silicon waveguided components for the long-wave infrared region, J Opt A: Pure and Appl Opt, 8(2006)840-848.
8. Hu J, Meyer J, Richardson K, Shah L, Feature issue introduction: mid-IR photonic materials, Opt Mater Exp, 3(2013)1571-1575. :
9. Lin H, Luo Z, Gu T, Kimerling L C, Wada, Agarwal A, Hu J, Mid-infrared integrated photonics on Silicon: a perspective, Nanophotonics, 7(2018)393-420.
10. Miller S E, Integrated optics: an introduction, Bell Syst Tech J, 48(1969)2059-2069.
11. Pal B P, Guided wave optics on silicon: Physics, technology and status, Chapter 1 in Progress in Optics, Wolf E (ed), vol. XXXII(Elsevier Science Publishers 

      B.V.),1993, pp 1-59.
12. Pal B P, Syms R R A (Guest Editors), Special issue on guided-wave optics on silicon, IEE Proc. Optoelectron, 143 (1996).
13. Lipson M, Guiding, modulating, and emitting light on silicon-challenges and opportunities, J Lightwave Technol, 23(2005)4222-4228.
14. Gonzalez-Guerrero A B, Dante S, Duval D, Osmond J, Lechuga L M, Advanced photonic biosensors for point-of-care diagnostics, 

       Procedia Engg, 25(2011)71-75.
15. Agrawal G P, Nonlinear Fiber Optics 4th edn, (Academic Press, San Diego, CA), 2007.
16. Cappellini G, Trillo S, Third-order three wave mixing in single-mode fibers: exact solutions and spatial instability effects, J Opt Soc Am B, 8(1991)824-838.
17. Barh A, Ghosh S, Agrawal G P, Varshney R K, Aggarwal I D, Pal B P, Design of an efficient mid-IR light source using chalcogenide holey fibers: A numerical 

       study, J Opt. 15(2013)035205 (4 pages); doi:10.1088/2040-8978/15/3/035205
18. Barh A, Ghosh S, Varshney R K, Pal B P, An efficient broad-band mid-wave IR fiber optic light source: design and performance simulation, Opt Exp, 

      21(2013)9547-9555.
19. Barh A, Ghosh S, Varshney R K, Pal B P, Sanghera J, Shaw L B, Aggarwal I D, Mid-IR fiber optic light source around 6 µm through parametric wavelength  

      translation, Laser Phys. 24(2014)115401 (7 pages); doi.org/10.1088/1054-660X/24/11/115401
20. Almeida V R, Xu Q, Barrios C A, Lipson M L, Guiding and confining light in void nanostructure, Opt Letts, 29(2004)1209-1211.
21. Sanchis P, Blasco J, Martínez A, Marti J, Design of silicon-based slot waveguide Configurations for optimum nonlinear performance, J Lightwave Tech, 

      25(2007)1298-1305.
22. Kumari B, Barh A, Varshney R K, Pal B P, Silicon-on-nitride slot waveguide: A promising platform as mid-IR trace gas sensor, Sensors and Actuators B, 

      236(2016)759-764.
23. Kumari B, Varshney R K, Pal B P, Design of chip-scale silicon slot waveguide for sub-ppm detection of N2O gas at mid-IR band, Sensors and Actuators B, 

      255(2016)3409-3416.
24. Jones T B, Spott A, Ilic R, Spott A, Penkov B, Asher W, Hochberg M, Silicon-on-sapphire integrated waveguides for the mid-infrared, Opt Exp, 

      18(2010)12127-12135.
25. Huang Y, Kalyoncu S K, Song Q, Boyraz O, Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors, Conference on Lasers 

      and Electro-Optics (CLEO) Tech Digest OSA, 2012, Paper JW2A, 122(2012)1-2.
26. Barwitcz T, Watts M R, Popovic M A, Rakich P T, Socci L, Kärtner F X, Ippen E P, Smith H I, Polarization-transparent microphotonic devices in the strong 

      confinement limit, Nature Photon, 1(2007)57-60.
27. Kumari B, Varshney R K, Pal B P, Design of a silicon-on-calcium-fluoride-based ultra-compact and highly efficient polarization splitter for the mid-IR, Opt 

      Eng, 58(2019)037102, 9 pages; doi: 10.1117/1.OE.58.3.037102
28. Zhang H, Huang Y, Das S, Li C, Yu M, Lo P G Q, Hong M, Thong J, Polarization splitter using horizontal slot waveguide, Opt Exp, 21(2013)3363-3368.
29. Kumari B, Varshney R K, Pal B P, Design of a silicon-on-calcium-fluoride-based compact and efficient polarization rotator for the mid-IR, OSA Continuum 

      1(2018)1158-1171.
30. Nedeljkovic M, Khokhar A Z, Hu Y, Chen X, Penades J S, Stankovic S, Chong H M H, Thomson D J, Gardes F Y, Reed G T, Mashanovich G Z,Silicon 

      photonic devices and platforms for the mid-infrared, Opt Mater Exp, 3(2013)1205-1214.

Guided wave photonics for light sources, sensors and passive components at mid-IR.pdf
Babita Bakshi (nee Kumari), Ajanta Barh, Somnath Ghosh, Ravendra K Varshney and Bishnu P Pal

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 891-898


Trends in micro-optics and nanophotonics technology

Amitava Ghosh, Amit K Agarwal and M P Singh
Instruments R & D Establishment, Raipur Road, Dehradun-248 008, India


This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

Micro-optics and nanophotonics cover areas of refractive and diffractive micro-optics, metamaterials, photonic crystals, and silicon photonics. Processes have been developed for the fabrication of micro-optical elements like microlens arrays, computer generated holograms and diffractive lenses. Applications based on micro-optics like compact and lightweight cameras, wavefront sensors, and aspheric optics testing using diffractive null elements are being targeted. In collaboration with various leading academic research groups in the country, futuristic applications that use nanostructures based on metamaterials, photonic crystals and silicon photonics are being identified. This paper will cover major initiatives taken by IRDE (India) in the area of micro-optics and nanophotonics technologies and their defense applications. © Anita Publications. All rights reserved.
Keywords: Micro-optics, Nano photonics, Metamaterials, Photonic crystals

Refs : 34

Trends in micro-optics and nanophotonics technology.pdf
Amitava Ghosh, Amit K Agarwal and M P Singh

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 899-905


Broadband infrared emissivity engineering in optically transparent metamaterials

by regulation of electromagnetic resonances


Nitish Kumar Gupta1, Harshawardhan Wanare1,2 and S Anantha Ramakrishna2
1Centre for Lasers and Photonics, Indian Institute of Technology Kanpur, Kanpur-208 016, India
2Department of Physics, Indian Institute of Technology Kanpur, Kanpur-208 016, India


This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

We present designs of optically transparent metamaterial structures with customizable emissivity response across the technologically important Long Wave Infrared (LWIR) window. The proposed designs have explicitly been conceived in a manner that separates the micro-structuring and thin film deposition steps leading to substantial fabrication process simplification, making them suitable for mass production over large areas. These emissivity engineered structures may be employed for digital spatial modulation of inherent thermal radiation from an object, thereby making them useful in encoding information for security applications. Furthermore, based on the finite element simulations, we have characterized the electromagnetic resonances of the structure and briefly explained the underlying physical mechanisms for the band-selective absorptivity. © Anita Publications. All rights reserved.
Keywords: Emissivity, Metamaterial, Optical Transparency, Resonance.

References
    1.    Zhong S, Jiang W, Xu P, Liu T, Huang J, Ma Y, A radar-infrared bi-stealth structure based on metasurfaces, Appl Phys Lett, 110(2017)1-5.
    2.    Zhang C, Yang J, Yuan W, Zhao J, Dai J Y, Guo T C, Liang J, Xu G Y, Cheng Q, Cui T J, An ultralight and thin metasurface for radar-infrared bi-stealth

           applications, J Phys D: Appl Phys, 50(2017)1-7.
    3.    Zhong S, Wu L, Liu T, Huang J, Jiang W, Ma Y, Transparent transmission-selective radar-infrared bi-stealth structure, Opt Express, 26(2018)16466-16476.
    4.    Dayal G, Ramakrishna S A, Design of highly absorbing metamaterials for Infrared frequencies, Opt Express, 20(2012)17503-17508.
    5.    Kumar R, Ramakrishna S A, Simple trilayer metamaterial absorber associated with Fano-like resonance, J Nanophoton, 14(2020)1-12.
    6.    Kumar R, Agarwal A K, Ramakrishna S A, Development of a metamaterial structure for large-area surfaces with specified infrared emissivity, Opt Eng,

           57(2018)1-9.
    7.    Dayal G, Ramakrishna S A, Multipolar localized resonances for multi-band metamaterial perfect absorbers, J Opt, 16(2014)1-6.
    8.    Dayal G, Ramakrishna S A, Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane, Opt Express,

           22(2014)15104-15110.
    9.    Granqvist C G, Hultåker A, Transparent and conducting ITO films: new developments and applications, Thin Solid Films, 411(2002)1–5.
    10.  Debenham M, Refractive indices of zinc sulfide in the 0.405–13-μm wavelength range, Appl Opt, 23(1984)2238-2239.

Broadband infrared emissivity engineering in optically transparent metamaterials by regulation of electromagnetic resonances.pdf
Nitish Kumar Gupta, Harshawardhan Wanare and S Anantha Ramakrishna

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 907-919


Degree of polarization of a spectral electromagnetic Gaussian Schell-model

beam passing through 2-f and 4-f lens systems

Rajneesh Joshi and Bhaskar Kanseri*
Experimental Quantum Interferometry and Polarization (EQUIP), Department of Physics,
Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110 016, India

This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

Spectral electromagnetic Gaussian Schell-model (SEGSM) beam is a generalization of Gaussian Schell-model beam having parameters with spectral dependence, which offers a basic classical model for random electromagnetic wide-sense statistically stationary beam-like fields. We study degree of polarization (DOP) of a SEGSM beam passing through 2-f and 4-f lens systems. It is observed that for a 2-f lens system, the spectral DOP at the back focal plane of the lens changes with respect to the transverse position from the optic axis, and the spectral parameters of the beam. For a 4-f lens system, the spectral DOP at the back focal plane is independent of the transverse position of the beam, whereas it depends on the beam parameters such as mean value of rms beam-width, rms width of correlation function, and size of aperture placed at the Fourier plane of the lens system. © Anita Publications. All rights reserved.
Keywords: Schell-model beam,Vector field,Coherence,Polarization.
References
    1.    Mandel L, Wolf E, Optical coherence and quantum optics, (Cambridge Univ, Press, NewYork), 1995.
    2.    Wolf E, Introduction to Theory of Coherence and Polarization of Light, (Cambridge Univ Press, New York), 2007.
    3.    Korotkova O, Salem M , Wolf E, Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source, Opt Lett,

           11(2004)1173-1175.
    4.    Gori F, Santarsiero M, Piquero G, Borghi R, Mondello A, Simon R, Partially polarized Gaussian Schell-model beams, J Opt A:Pure Appl Opt, 3(2001)1-9.
    5.    Gori F, Santarsiero M, Borghi R, Ramirez-Sanchez V, Realizability condition for electromagnetic Schell-model sources, J Opt Soc Am A,

           25(2008)1016-1021.
    6.    Shchepakina E, Korotkova O, Spectral Gaussian Schell-model beams, Opt Lett, 38(2013)2233-2236.
    7.    Zhang L, Xu Z, Pu T, Zhang H, Wang J, Shen Y, Change in the State of polarization of Gaussian Schell-model beam propagating through non-Kolmogorov

           turbulence, Res in Phys, 7(2017)4332-4336.
    8.    Jian W, Propagation of a Gaussian-Schell beam through turbulent media, J Mod Opt, 37(1990)671-684.
    9.    Hauge P S, Survey of methods for the complete determination of a state of polarization, SPIE, 88(1976)3-10; doi.org/10.1117/12.955006
    10.  Berry H G, Gabrielse G, Livingston A E, Measurement of the Stokes parameters of light, Appl Opt, 16(1977)3200-3205.
    11.  Demos S G, Alfano R R,Temporal gating in highly scattering media by the degree of optical polarization, Opt Lett, 21(1996)161-163.
    12.  Cassidy D T, Lam S K L, Lakshmi B, Bruce D M, Strain mapping by measurement of the degree of polarization of photoluminescence, Appl Opt,

           43(2004)1811-1818.
    13.  Tervo J, Setälä T, Friberg A T, Degree of coherence for electromagnetic fields, Opt Exp, 11(2003)1137-1143.
    14.  Kanseri B , Optical Coherence and Polarization: An Experimental Outlook (Lambert Academic Publishing, Germany), 2013.
    15.  Setälä T, Tervo J, Friberg A T, Contrasts of Stokes parameters in young’s interference experiment and electromagnetic degree of coherence, Opt Lett,

           31(2006)2669-2671.
    16.  Setälä T,Tervo J, Friberg A T, Stokes parameters and polarization contrasts in Young’s interference experiment, Opt Lett, 31(2006)2208- 2210.
    17.  Kanseri B, Kandpal H C, Experimental determination of two-point Stokes parameters for a partially coherent broadband light beam, Opt Comm,

           283(2010)4558-4562.
    18.  Leppanen L P, Saastamoinen K, Friberg A T, Setälä T, Interferometric interpretation for the degree of polarization of classical optical beams, New J Phys,

          16(2014)1-15.
    19.  Kanseri B, Joshi R, Determination of temporal correlation properties of electromagnetic optical fields, Opt Commun, 457(2020)1-5.
    20.  Zhao X, Visser T D, Agrawal G P, Controlling the degree of polarization of partially coherent electromagnetic beams with lenses, Opt Lett,

           43(2018)2344-2347.
    21.  Wang F, Wu G, Liu X, Zhu S, Cai Y, Experimental measurement of the beam parameters of an electromagnetic Gaussian Schell-model source, Opt Lett,

           36(2011)2722-2724.
    22.  Shirai T, Korotkova O, Wolf E, A method of generating electromagnetic Gaussian Schell-model beams, J Opt A: Pure Appl Opt, 7(2005)232-237.
    23.  Lin Q, Cai Y, Tensor ABCD law for partially coherent twisted Anisotropic Gaussian-Schell model beams, Opt Lett, 27(2002)216-218.

Degree of polarization of a spectral electromagnetic Gaussian Schell-model....pdf
Rajneesh Joshi and Bhaskar Kanseri

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 921-928

 

Role of speckle grains in the information optics

R K Singh
Department of Physics,
Indian Institute of Technology (Banaras Hindu University), Varanasi- 221 005, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

Role of speckle grain in the information optics is discussed and an approach to recover the object from the speckle grain is described. Possible uses of the different correlations of the speckle patterns and their applications in the imaging are highlighted. It is demonstrated that under suitable condition, it is possible to recover the object from a speckle pattern. © Anita Publications. All rights reserved.
Keywords: Wave propagation, Random scattering, Laser speckle, Information Optics, Correlation optics

References
    1.    Goodman JW, Speckle phenomena in Optics: Theory and Applications (Roberts & Company, USA), 2007.
    2.    Mehta D S, Naik D N, Singh R K, Takeda M, Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular

           diversity, Appl Opt, 51(2012)1894-1904.
    3.    Tran T K T, Chen X, Svensen Ø, Akram M N, Speckle reduction in laser projection using a dynamic deformable mirror, Opt Express, 22(2014)11152-11166.
    4.    Pan J W, Shih C H, Speckle reduction and maintaining contrast in a LASER pico-projector using a vibrating symmetric diffuser, Opt Express,

           22(2014)6464-6477.
    5.    Bianco V, Memmolo P, Leo M, Montresor S, Distante C, Paturzo M, Picart P, Javidi B, Ferraro P, Strategies for reducing speckle noise in digital holography,

           Light: Science & Appl, 7(2018)48; doi.org/10.1038/s41377-018-0050-9.
    6.    Heeman W, Steenbergen W, van Dam G M, Boerma E C, Clinical applications of laser speckle contrast imaging: a review, J Bio Med Opt, 24(2019)080901;

           doi.org/10.1117/1.JBO.24.8.080901
    7.    Shirley L G, Lo P A, Bispectral analysis of the wavelength dependence of speckle: remote sensing of object shape J Opt Soc Am A, 11(1994)1025-1046.
    8.    Lewis G, Jordan D L, Remote sensing of polarimetric speckle, J Phys D: Appl Phys, 34(2001)1399; doi.org/10.1088/0022-3727/34/9/317.
    9.    Rousset G, Fontanella J C, Kern P, Gigan P, Rigaut F, Lena P, Boyer C, Jagourel P, Gaffard J P, Merkle, Astron Astrophys, 230(1990)L29-L32.
    10.  Hashi Y, Yamada Y, Overview of diffuse optical tomography and its clinical applications, J Bio Med Opt, 21(2016) 091312; /doi.org/10.1117

           /1.JBO.21.9.091312.
    11.  Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S, Measuring the transmission matrix in optics: an approach to the study and control of

           light propagation in disordered media, Phys Rev Lett, 104(2010)100601; doi.org/10.1103/PhysRevLett.104.100601.
    12.  Lee K, Lee J, Park J H, Park Y, One-wave optical phase conjugation mirror by actively coupling arbitrary light fields into a single-mode reflector, Phys Rev

           Lett, 115(2015)153902; doi.org/10.1103/PhysRevLett.115.153902
    13.  Wan L, Ji X, Singh R K, Chen Z, Pu J, Use of scattering layer as a programmable spectrum filter, IEEE J Qunat Electron, 55(2019)6100306;

           doi.10.1109/JQE.2019.2937983.
    14.  Freund I, Image reconstruction through multiple scattering media, Opt Commun, 86(1991)216-227.
    15.  Freund I, Optical intensity fluctuations in multiply scattering media, Opt Commun, 81(1991)251-258.
    16.  Freund I, Stokes-vector reconstruction, Opt Lett, 15(1990)1425-1427.
    17.  Idell P S, Fienup J R, Goodman R S, Image synthesis from nonimaged laser-speckle patterns, Opt Lett, 12(1987)858-860.
    18.  Das B, Bisht N S, Vinu R V, Singh R K, Lensless complex amplitude image retrieval through a visually opaque scattering medium, Appl Opt, 

           56(2017)4591-4597.
    19.  Katz O, Small E, Silberberg Y, Looking around corners and through thin turbid layers in real time with scattered incoherent light, Nat Photon, 

           6(2012)549-553.
    20.  Singh A K, Naik D N, Pedrini G, Takeda M, Osten W, Exploiting scattering media for exploring 3D objects, Light: Science & Applications,

           6(2017)e16219; doi.org/10.1038/lsa.2016.219.
    21.  Okamoto Y, Horisaki R, Tanida J, Noninvasive three-dimensional imaging through scattering media by three-dimensional speckle correlation, Opt Lett,

           44(2019)2526-2529.
    22.  Horisaki R, Okamoto Y, Tanida J, Single-shot noninvasive three-dimensional imaging through scattering media, Opt Lett, 44(2019)4032-4035.
    23.  Naik D N, Singh R K, Ezawa T, Miyamoto Y, Takeda M, Photon correlation holography, Opt Express, 19(2011)1408-1421.
    24.  Singh R K, Hybrid correlation holography with a single pixel detector, Opt Lett, 42(2017)2515-2518.
    25.  Brown R H, Twiss R Q, Correlation between photons in two coherent beams of light, Nature, 177(1956)27-29.
    26.  Brown R H, Twiss R Q, Interferometry of the intensity fluctuations in light-i. basic theory: the correlation between photons in coherent beams of radiation,

           Proc Roy Soc (London) Sec A, 242(1957)300-324.
    27.  Mandel L, Wolf E, Optical coherence and quantum optics, (Cambridge Univ Press), 1995.
    28.  Takeda M, Opt Lett, Spatial stationarity of statistical optical fields for coherence holography and photon correlation holography, 38(2013)3452-3455.
    29.  Singh R K, Vinu R V, Sharma A, Recovery of complex valued objects from two-point intensity correlation measurement, Appl Phys Lett,

           104(2014)111108; doi.org/10.1063/1.4869123.
    30.  Somkuwar A S, Das B, Vinu R V, Park Y K, Singh R K, Holographic imaging through a scattering layer using speckle interferometry, J Opt Soc Am A,

           34(2017)1392-1399.
    31.  Singh R K, Vyas S, Miyamoto Y, Lensless Fourier transform holography for coherence waves, J Opt, 19(2017)115705; doi.org/10.1088/2040-8986/aa8b8f.
    32.  Singh D, Singh R K, Lensless Stokes holography with the Hanbury Brown-Twiss approach, Opt Express, 26(2018)10801-10812.
    33.  Takeda M, Wang W, Naik D N, Singh R K, Spatial statistical optics and spatial correlation holography: a review Opt Rev, 21(2014)849-861.
    34.  Goodan J W, Fourier Optics, (Roberts & Company), 2004.
    35.  Soni N K, Vinu R V, Singh R K, Polarization modulation for imaging behind the scattering medium, Opt Lett, 41 (2016)906-909.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 929-940


Imaging based system for performing total leukocyte count in minute volumes of human blood

Bhargab Das1,*, Swati Bansal1, Girish C Mohanta2, Sanjit K Debnath3, Raj Kumar3 and Prateek Bhatia4
1Advanced Materials and Sensors Division, CSIR-Central Scientific Instruments Organization, Chandigarh-160 030, India
2Ubiquitous Analytical Techniques Division, CSIR-Central Scientific Instruments Organization, Chandigarh-160 030, India
3Optical Devices & Systems Division, CSIR-Central Scientific Instruments Organization, Chandigarh-160 030, India
4Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh-160 012, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

Total leukocyte (white blood cells, WBCs) count is one of the most frequently ordered clinical tests in hospitals assisting with diagnosis and prognosis of various diseases. Counting of WBCs can be performed either manually using conventional light microscopes or automatically using specialized equipment. Manual methods are inexpensive, but they are more laborious and time consuming as well as being error-prone because of small field-of-view of conventional light microscopes. Automatic techniques provide statistically more accurate results but the required equipment and other resources are very expensive and simultaneously require large volumes of blood. As a result, the current research efforts are being carried out towards the development of portable easy to use blood cell count technologies. In an effort towards this direction, we present here our recent experimental results towards the realization of a portable, low-cost, image based system for performing total leukocyte count in minute volumes of human blood. Both interferometric and non-interferometric methods are explored for imaging of stained and unstained blood smear samples. Mach-Zehnder based digital holographic configuration is studied using coherent light source. In addition, in order to get rid of speckle noise, we also explored a white light interferometer based on diffraction phase microscopy technique. Finally, a non-interferometric concept implemented with selective fluorescent tagging of WBCs is realized. This fluorescence imaging based concept together with automated image processing and analysis provides a powerful technique for distinguishing WBCs and RBCs, as well as counting the number of WBCs in the field of view. © Anita Publications. All rights reserved.
Keywords: Total leukocyte count, White blood cells, Digital holography, Interferometry, White-light interferometry, Fluorescence imaging, Acridine orange, Image processing, Cell counting.
References
    1.    Mahouy G, Lund P R,Chinn S, Barnes R D,The use of automated image analysis in differential white cell counting, Scandinavian J Hematology,

           10(1973)315-318.
    2.    Seo S, Isikman S O, Sencan I, Mudanyall O, Su T-W, Bishara W, Erlinger A, Ozcan A, High-throughput lens-free blood analysis on a chip, Anal Chem,

           82(2010)4621-4627.
    3.    Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, Ozcan A, Cost-effective and rapid blood analysis on a cell-phone, Lab Chip,

           13(2013)1282-1288.   
    4.    Chung J, Ou X, Kulkarni R P, Yang C, Counting white blood cells from a blood smear using Fourier ptychographic microscopy, PLoS One,

           10(2015)0133489; doi:10.1371/journal.pone.0133489
    5.    Hoffman R A, Johnson T S, Britt W B, Flow cytometric electronic direct current volume and radiofrequency impedance measurement of single cells and

           particles, Cytometry, 1(1981)377-384.   
    6.    Holmes D, Pettigrew D, Reccius C H, Gwyer J D, van Berkel C, Holloway J, Davies D E, Morgan H, Leukocyte analysis and differentiation using high

           speed microfluidic single cell impedance cytometry, Lab Chip, 9(2009) 2881-2889
    7.    Buttarello M, Plebani M, Automated blood cell counts, Hematopathology, 130(2008)104-116.
    8.    Shi W, Blood cell count on-a-chip, Ph D Thesis, California Institute of Technology, Pasadena, California, 2013.
    9.    Brown M, Wittwer C, Flow cytometry: principles and clinical applications in hematology, Clin Chem, 46(2000) 1221-1229.
    10.  Zheng S, Lin J C-H, Kasdan H L, Tai Y-C, Fluorescent labeling, sensing, and differentiation of leukocytes from undiluted whole blood samples Sensors and

           Actuators B, 132(2008)558-567.
    11.  Golan L, Yeheskely-Hayon D, Minai L, Dann E J, Yelin D, Noninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry

           Biomed, Opt Express, 3(2012)1455-1564.
    12.  Shi W, Guo L, Kasdan H, Tai Y-C, Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye, Lab Chip,

           13(2013)1257-1265.
    13.  https://www.hemocue.com/en/solutions/hematology/hemocue-wbc-system.
    14.  https://www.sysmex.com/us/en/Products/Hematology/3PartDiff/Pages/pocHi-Hematology-Analyzer.aspx.
    15.  Schnars U, Juptner W, Direct recording of holograms by a CCD target and numerical reconstruction, Appl Opt, 33(1994)179-181.
    16.  Cuche E, Marquet P, Depeursinge C, Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel

           off-axis holograms, Appl Opt, 38(1999)6994-7001.
    17.  Das B, Yelleswarapu C S, Dual plane in-line digital holographic microscopy, Opt Lett, 35(2010)3426-3428.
    18.  Varghese A, Das B, Singh R K, Highly stable lensless digital holography using cyclic lateral shearing interferometer and residual decollimated beam, Opt

           Commun, 422(2018)3-7.
    19.  Park Y-K, Popescu G, Badizadegan K, Dasari, R R, Feld, M S, Diffraction phase and fluorescence microscopy, Opt Express, 14(2006)8263-8268.
    20.  Popescu G, Ikeda T, Dasari R R, Feld M S, Diffraction phase microscopy for quantifying cell structure and dynamics, Opt Lett, 31(2006)775-777.
    21.  Bhaduri B, Pham H, Mir M, Popescu G, Diffraction phase microscopy with white light, Opt Lett, 37(2012)1094-1096.
    22.  Melamed M R, Adams L R, Zimring A, Murnick J G, Mayer K, Preliminary evaluation of acridine orange as a vital stain for automated differential

           leukocyte counts, Am J Clinical Pathology, 57(1972)95-102.
    23.  Smith Z J, Gao T, Chu K, Lane S M, Matthews D L, Dwyre D M, Hood J, Tatsukawa K, Heifetz L, Wachsmann-Hogiu S, Single-step preparation and

           image-based counting of minute volumes of human blood, Lab Chip, 14(2014)3029-3036.
    24.  Adams L R, Kamentsky L A, Machine characterization of human leukocytes by acridine orange fluorescence, Acta Cytologica, 15(1971)289-291.
    25.  Jahanmehr S A, Hyde K, Geary C G, Cinkotai K I, Maciver J E, Simple technique for fluorescence staining of blood cells with acridine orange, J Clinical

           Pathology, 40(1987)926-929.
    26.  Traganos F, Darzynkiewicz Z, Lysosomal proton pump activity: supravital cell staining with acridine orange differentiates leukocyte subpopulations,

           Methods Cell Biol, 41(1994)185-194.
    27.  Powless A J, Conley R J, Freeman K A, Muldoon T J, Considerations for point-of-care diagnostics: evaluation of acridine orange staining and post-

           processing methods for a three-part leukocyte differential test, J Biomed Opt, 22(2017)035001; doi.org/10.1117/1.JBO.22.3.035001
    28.  Forcucci A, Pawlowski M E, Majors C, Richards-Kortum R, Tkaczyk T S, All-plastic, miniature, digital fluorescence microscope for three-part white blood

           cell differential measurements at the point of care, Biomed Opt Express, 6 (2015)4433-4446.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 941-946


Noise sensitivity of the fast two-step fractional fringe detection method in digital holography

Kedar Khare
Department of Physics, Indian Institute of Technology Delhi,
Hauz Khas, New Delhi- 110 016, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

Accurate fractional fringe detection is an important problem in off-axis digital holography. Unless the carrier frequency peak in 2D Fourier transform of a recorded digital hologram is detected to sub-pixel accuracy, the reconstructed phase shows artifacts in the form of ramp phase background. Recently, we have presented a fast and robust two-step approach for fractional fringe detection that uses a Fast Fourier Transform (FFT) operation followed by local Discrete Cosine Transform (DCT) operation. In this work, we present sensitivity of this two-step fractional fringe detection method to Poisson noise. The aim of this analysis is to establish the detectability of fractional fringe shift for a given light level or for noise level associated with a realistic array sensor. It is observed that the two-step procedure is robust and provides accurate estimate of fractional fringe shift down to light level of 100 photon counts on average per pixel. © Anita Publications. All rights reserved.
Keywords: Fractional fringe detection, Interferometry, Digital holograhy.

References
    1.    Takeda M, Ina H, Kobayashi S, Fourier-transform method of fringe-pattern analysis for computer based topography and interferometry, J Opt Soc Am

           A,72(1982)156-160.
    2.    Du Y, Feng G, Li H, Accurate carrier-removal technique based on zero padding in Fourier transform method for carrier interferogram analysis, Optik,

           125(2014)1056-1061.
    3.    Singh M, Khare K, Accurate efficient carrier estimation for single-shot digital holographic imaging, Opt Lett, 41(2016)4871-4874.
    4.    Lahrberg M, Singh M, Khare K, Ahluwalia B, Accurate estimation of the illumination pattern’s orientation and wavelength in sinusoidal structured

           illumination microscopy, Appl Opt, 57(2018)1019-1025.
    5.    Guizar-Sicairos M, Thurman S, Fienup J R, Efficient subpixel image registration algorithms, Opt Lett, 33(2008) 156-158.

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 947-960


Asymmetric color image encryption mechanism using equal modulus
and random decomposition in hybrid transform domain

Pankaj Rakheja1, Phool Singh2, A K Yadav3* and Akhil Arora1
1Department of EECE, The North Cap University, Gurugram- 122 017, India
2Department of Mathematics (SOET),Central University of Haryana, Mahendergarh-609 602, India
3Department of Mathematics, Amity School of Applied Sciences, Amity University Haryana, Gurugram- 122 413, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

This paper presents a color image encryption mechanism utilizing equal modulus decomposition and random decomposition in hybrid transform domain. A 4D hyperchaotic system is employed for pixel swap over procedure. Its initial conditions and parameters broaden the key space. Kekre, Walsh and fractional Fourier transforms are used in generation of hybrid transform. The proposed encryption mechanism which possesses non-linear properties has higher resistance to brute force attacks owing to extended key space. Numerical simulations have been performed to validate and verify the performance of the proposed mechanism. The results obtained clearly demonstrate robustness of the proposed mechanism to noise attack and special attack. © Anita Publications. All rights reserved.
Keywords: Color image encryption; Asymmetric cryptosystem; Equal modulus decomposition; Random modulus decomposition

References
    1.    Refregier P, Javidi B, Optical image encryption based on input plane and Fourier plane random encoding, Opt Lett, 20(1995)767-769.
    2.    Unnikrishnan G, Joseph J, Singh K, Optical encryption by double-random phase encoding in the fractional Fourier domain, Opt Lett, 25(2000)887-889.
    3.    Hennelly B, Sheridan J T, Optical image encryption by random shifting in fractional Fourier domains, Opt Lett, 28(2003)269-271.    
    4.    Nishchal N K, Joseph J, Singh K, Securing information using fractional Fourier transform in digital holography, Opt Commun, 235(2004)253-259.
    5.    Abuturab M R, Group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform, J Opt Soc Am A,

           32(2015)1811-1820.
    6.    Liu Z, Chen H, Liu T, Li P, Xu L, Dai J, Liu S, Image encryption by using gyrator transform and Arnold transform, J Electron Imaging, 20(2011)013020;

           doi:10.1117/1.3557790.
    7.    Zhou N, Wang Y, Gong L, Novel optical image encryption scheme based on fractional Mellin transform, Opt Commun, 284(2011)3234-3242.
    8.    Chen L, Zhao D, Optical image encryption with Hartley transforms, Opt Lett, 31(2006)3438-3440.
    9.    Mehra I, Nishchal N K, Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding, Opt Express, 22(2014)5474-5482.
    10.  Situ G, Zhang J, Double random-phase encoding in the Fresnel domain, Opt Lett, 29(2004)1584-1586.
    11.  Chen W, Chen X, Sheppard CJR, Optical image encryption based on diffractive imaging, Opt Lett, 35(2010)3817-3819.
    12.  Liu W, Liu Z, Liu S, Asymmetric cryptosystem using random binary phase modulation based on mixture retrieval type of Yang-Gu algorithm, Opt Lett,

           38(2013)1651-1653.
    13.  Javidi B, Nomura T, Securing information by use of digital holography, Opt Lett, 25(2000)28-30.
    14.  Nomura T, Javidi B, Optical encryption using a joint transform correlator architecture, Opt Eng, 39(2000)2031-2036.
    15.  Singh P, Yadav A K, Singh K, Saini I, Optical image encryption in the fractional Hartley domain, using Arnold transform and singular value

           decomposition, AIP Conf Proc, 1802(2017)020017;doi:10.1063/1.4973267.
    16.  Tajahuerce E, Matoba O, Verrall SC, Javidi B, Optoelectronic information encryption with phase-shifting interferometry, Appl Opt, 39(2000)2313-2320.
    17.  Huang J-J, Hwang H-E, Chen C-Y, Chen C-M, Lensless multiple-image optical encryption based on improved phase retrieval algorithm, Appl Opt,

           51(2012)2388-2394.
    18.  Peng X, Zhang P, Wei H, Yu B, Known-plaintext attack on optical encryption based on double random phase keys, Opt Lett, 31(2006)1044-1046.
    19.  Gopinathan U, Monaghan D S, Naughton T J, Sheridan J T, A known-plaintext heuristic attack on the Fourier plane encryption algorithm, Opt Express,

           14(2006)3181-3186.
    20.  Biryukov A, Chosen Ciphertext Attack, Encyclopedia of Cryptography and Security, (Springer, Boston, MA), 2011, pp 205-205.
    21.  Biryukov A, Known Plaintext Attack, Encyclopedia of Cryptography and Security, (Springer, Boston, MA), 2011, pp 704-705.
    22.  Frauel Y, Castro A, Naughton T J, Javidi B, Resistance of the double random phase encryption against various attacks, Opt Express, 15(2007)10253-10265.
    23.  Qin W, Peng X, Asymmetric cryptosystem based on phase-truncated Fourier transforms, Opt Lett, 35(2010)118-120.
    24.  Wang X, Zhao D, Security enhancement of a phase-truncation based image encryption algorithm, Appl Opt, 50(2011) 6645-6651.
    25.  Wang X, Zhao D, Simultaneous nonlinear encryption of grayscale and color images based on phase-truncated fractional Fourier transform and optical

           superposition principle, Appl Opt, 52(2013)6170-6178.
    26.  Qin W, Universal and special keys based on phase-truncated Fourier transform, Opt Eng, 50(2011)080501; doi:10.1117/1.3607421.
    27.  Wang X, Zhao D, A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms, Opt Commun, 285(2012)1078-1081.
    28.  Wang Y, Quan C, Tay C J, Improved method of attack on an asymmetric cryptosystem based on phase-truncated Fourier transform, Appl Opt,

           54(2015)6874-6881.
    29.  Rajput S K, Nishchal N K, Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform, Appl Opt, 52(2013)871-878.
    30.  Rajput S K, Nishchal N K, Known-plaintext attack on encryption domain independent optical asymmetric cryptosystem, Opt Commun, 309(2013)231-235.
    31.  Wang X, Zhao D, Amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier-transform-based encryption using a

           random amplitude mask, Opt Lett,  38(2013)3684-3686.
    32.  Wang X, Chen Y, Dai C, Zhao D, Discussion and a new attack of the optical asymmetric cryptosystem based on phase-truncated Fourier transform, Appl

           Opt, 53(2014) 208-213.
    33.  Cai J, Shen X, Lei M, Lin C, Dou S, Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition, Opt Lett,

           40(2015)475-478.                                         
    34.  Deng X, Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition: comment, Opt Lett, 40(2015)3913-3913.
    35.  Barfungpa S P, Abuturab M R, Asymmetric cryptosystem using coherent superposition and equal modulus decomposition of fractional Fourier spectrum,

           Opt Quantum Electron, 48(2016)520; doi.org/10.1007/s11082-016-0786-5.                                                                                                             
    36.  Chen H, Tanougast C, Liu Z, Sieler L, Asymmetric optical cryptosystem for color image based on equal modulus decomposition in gyrator transform

           domains, Opt Lasers Eng, 93(2017)1-8.
    37.  Fatima A, Mehra I, Nishchal NK, Optical image encryption using equal modulus decomposition and multiple diffractive imaging, J Opt, 18(2016)085701;

           doi:10.1088/2040-8978/18/8/085701.
    38.  Chen H, Liu Z, Zhu L, Tanougast C, Blondel W, Asymmetric color cryptosystem using chaotic Ushiki map and equal modulus decomposition in fractional

           Fourier transform domains, Opt Lasers Eng, 112(2019)7-15.
    39.  Cai J, Shen X, Modified optical asymmetric image cryptosystem based on coherent superposition and equal modulus decomposition, Opt Laser Technol,

           95(2017)105-112.
    40.  Rakheja P, Vig R, Singh P, Asymmetric hybrid encryption scheme based on modified equal modulus decomposition in hybrid multi-resolution wavelet

           domain, J Mod Opt, 66(2019)799-811.
    41.  Rakheja P, Vig R, Singh P, Kumar R, An iris biometric protection scheme using 4D hyperchaotic system and modified equal modulus decomposition in

           hybrid multi resolution wavelet domain, Opt Quantum Electron, 51(2019) 204; doi:10.1007/s11082-019-1921-x.
    42.  Wang Y, Quan C, Tay C J, New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition, Appl

           Opt, 55(2016)679-686.
    43.  Xu H, Xu W, Wang S, Wu S, Phase-only asymmetric optical cryptosystem based on random modulus decomposition, J Mod Opt, 65(2018)1245-1252.
    44.  Rakheja P, Vig R, Singh P, An asymmetric watermarking scheme based on random decomposition in hybrid multi-resolution wavelet domain using 3D

           Lorenz chaotic system, Optik, 198(2019)163289; doi:10.1016/j.ijleo.2019.163289.
    45.  Rakheja P, Vig R, Singh P, An asymmetric hybrid cryptosystem using hyperchaotic system and random decomposition in hybrid multi resolution wavelet

           domain, Multimed. Tools Appl, 78(2019)20809-20834.
    46.  Rakheja P, Vig R, Singh P, An asymmetric hybrid cryptosystem using equal modulus and random decomposition in hybrid transform domain, Opt Quantum

           Electron, 51(2019)54; doi:10.1016/j.ijleo.2018.09.088.
    47.  Xu H, Xu W, Wang S, Wu S, Asymmetric optical cryptosystem based on modulus decomposition in Fresnel domain, Opt Commun, 402(2017)302-310.
    48.  Chen A, Lu J, Lü J, Yu S, Generating hyperchaotic Lü attractor via state feedback control, Phys Stat Mech Its Appl, 364(2006)103-110.
    49.  Lohmann A W, Image rotation, Wigner rotation, and the fractional Fourier transform, J Opt Soc Am, 10(1993) 2181-2186.
    50.  Candan C, Kutay M A, Ozaktas H M, The discrete fractional Fourier transform, IEEE Trans Signal Process, 48(2000)1329-1337.
    51.  Rakheja P, Vig R, Singh P, Optical asymmetric watermarking using 4D hyperchaotic system and modified equal modulus decomposition in hybrid multi

           resolution wavelet domain, Optik, 176(2019)425-437.
    52.  Rakheja P, Vig R, Singh P, A hybrid multiresolution wavelet transform based encryption scheme, AIP Conf Proc, 2061(2019)020008;

           doi:10.1016/j.ijleo.2018.09.088.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 961-981


Plasmonic nanowire coupled to zero-dimensional nanostructures: A brief review

Sunny Tiwari1, Chetna Taneja1 and G V Pavan Kumar1,2*
1Department of Physics, Indian Institute of Science Education and Research, Pune-411 008, India
2Center for Energy Science, Indian Institute of Science Education and Research, Pune-411 008, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

Metal nanowires and nanoparticles that facilitate surface plasmons are of contemporary interest in nanophotonics, thermoplasmonics and optoelectronics. They facilitate not only subwavelength light propagation and localization capabilities, but also provide an excellent platform for opto-thermal effects confined to volumes down to the nanoscale. This brief review article aims to provide an overview of a specific nanophotonic geometry: a plasmonic nanowire coupled to a zero-dimensional nanostructure. We discuss the methods to prepare such nano-architectures and review some interesting nanophotonic applications that arise out of it. We conclude with a discussion on some emerging research directions that can be facilitated by employing the coupled nanostructures. © Anita Publications. All rights reserved.
Keywords: Nanowire-nanoparticle junction, Surface plasmon polaritons, Surface enhanced Raman scattering, Remote excitation, Fourier plane imaging.

Total Refs : 98

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 983-988

 

Phase reconstruction using compressive parallel phase shift digital
holography with Haar wavelet sparsification

Prakash Ramachandran1 and Anith Nelleri2
1Vellore Institute of Technology (VIT), Vellore-632 014, Tamilnadu, India
2Vellore Institute of Technology (VIT), Chennai, 600 127, Tamilnadu, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

Parallel phase shift digital holography (PPSDH) is a single exposure linear holographic scheme and much suitable for 3D imaging of moving specimens. The linearity of this scheme fits well in to the compressive sensing (CS) frame work. In this paper, we have proposed a method in which the compressive sensing is applied to a two-step parallel phase shift digital holography with Haar wavelet sparsification. A superior phase reconstruction was obtained by this method since the CS approach compensates the noise in the retrieved Fresnel field computed from PPSDH holograms that aroused due to the loss of pixels and approximations involved in parallel phase shift digital holography scheme. The robustness of this CS based method was demonstrated by performing the reconstruction from holograms in which only 50% of the detected Fresnel field sample points were retained. Three methods have been compared such as conventional PPSDH, CS based PPSDH and CS-PPSDH with Haar wavelet sparsified object field. The results show that wavelet sparsified CS-PPSDH is superior to other methods in quantitative phase information reconstruction. The results are presented from numerical experiments to demonstrate the concept. © Anita Publications. All rights reserved.

Keywords: Digital holography, Phase reconstruction, Compressive sensing, Parallel phase shift digital holography, Sparsity, Wavelet sparsification.

References
    1.    Brady D J, Choi K, Marks D L, Horisaki R, Lim S, Compressive Holography, Opt Express,17(2009 )13040-13049.
    2.    Rivenson Y, Stern A, Javidi B, Overview of compressive sensing techniques applied in holography, Appl Opt, 52(2013)A423-A432.
    3.    Rivenson Y, Stern A, Javidi B, Compressive Fresnel Holography, J Disp Technol, 6(2010)506-512.
    4.    Rivenson Y, Stern A, Conditions for practicing compressive Fresnel holography, Opt Lett, 36(2011)3365-3367.
    5.    Ramachandran P, Alex Z C, Nelleri A, Compressive Fresnel digital holography using Fresnelet based sparse representation, Opt Commun,

           340(2015)110-115.
    6.    Ke K, Ashok A, Neifeld M A, Block-wise motion detection using compressive imaging system, Opt Commun, 284(2011)1170-1180.
    7.    Wu X, Yu Y, Zhou W, Asundi A, 4f amplified in-line compressive holography, Opt Express, 22(2014)19860-19872.
    8.    Rivenson Y, Stern A, Javidi B, Improved depth resolution by single-exposure in-line compressive holography, Appl Opt, 52(2013)A223-A231.
    9.    Wan Y, Man T, Wu F, Kim M, Wang D, Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing,

           Opt Laser Eng, 86(2016)38-43.
    10.  Ramachandran P, Alex Z C, A. Nelleri A, Phase Reconstruction Using Compressive Two Step Parallel Phase Shifting Digital Holography, Opt Eng,

           57(2018)043105; doi.org/10.1117/1.OE.57.4.043105.
    11.  Candès E, Compressive sampling, Proceedings of the International Congress of Mathematicians, Madrid, Spain, (2006)1-20
    12.  Donoho D L, Compressed sensing, IEEE Trans on Inf Theory, 52(2006)1289-1306.
    13.  Candès E, Romberg J, Sparsity and incoherence in compressive sampling, Inverse Problems, 23(2007)969-985.
    14.  Candes E, Wakin M, Gradient projection for sparse reconstruction, IEEE Signal Process Mag, 25(2008)21-30.
    15.  Figueiredo M A T, Nowak R D, Wright S J, Gradient projection for sparse reconstruction, IEEE J Sel Topics Signal Process, 1(2007)586-597.
    16.  Yamaguchi I, Zhang T, Parallel quasi-phase digital holography, Opt Lett, 22(1997)1268-1270.
    17.  Awatsuji Y, Sasada M, Kubota T, Parallel quasi-phase digital holography, Appl Phys Lett, 85(2004)1069-1071.
    18.  Awatsuji Y, Tahara T, Kaneko A, Koyama T, Nishio K, Ura S, Kubota T, Matoba O, Improving image quality of parallel phase-shifting digital holography, J

           Phys: Conf Ser, 139(2008)012009; doi:10.1088/1742-6596/139/1/012009.
    19.  Meng X F, Cai L Z, Xu X F, Yang X L, Shen X X, Dong G Y, Wang Y R, Two-step phase-shifting interferometry and its application in image encryption,

           Opt Lett, 31(2006)1414-1416.
    20.  Nelleri A, Gopinathan U, Joseph J, Singh K,Three-dimensional object recognition from digital Fresnel hologram by wavelet matched filtering, Opt

           Commun, 259(2006)499-506.
    21.  Nelleri A, Joseph J, Singh K, Recognition and classification of three-dimensional phase objects by digital Fresnel holography, Appl Opt,

           45(2006)4046-4053.
    22.  Nelleri A, Joseph J, Singh K, Digital holography for three-dimensional information processing: Application to object recognition and information security,

           Asian J Phys, 15(2006)253-273.
    23.  Nelleri A, Joseph J, Singh K, “Phase reconstruction in lensless digital in-line holographic microscopy, Opt Lasers Eng, 48(2010)27-31.

Phase reconstruction using compressive parallel phase shift digital holography with Haar wavelet sparsification.pdf
Prakash Ramachandran and Anith Nelleri

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 989-1013


Vectorial imaging techniques for insights into the principles of optical tweezers

Sirshendu Dinda and Debabrata Goswami
Department of Chemistry
Indian Institute of Technology Kanpur-208 016, India.

This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics 

___________________________________________________________________________________________________________________________________

Optical tweezers work on the principle that microscopic particles may be immobilized by the application of an intense photon flux, which may be attained under tight focusing conditions. To elucidate the behaviour and mechanism of this tweezing action, herein we perform numerical studies and investigate the intensity distribution at the focusing spot under tight focusing conditions. With a high numerical aperture optical lens, the influence of the incident beam polarization on the intensity distribution of focusing spot is very significant. A linearly polarized incident beam induces an asymmetric focusing spot, which is elongated along the polarization direction of the incident beam. The incident beam profile influences the shape of the focusing spot. We show here how introducing an optical mask in front of the optical lens can induce many impressive results; e.g., incident beam modulated by an amplitude mask induces a sub-diffraction limit focusing spot which is relevant to further studies on optical tweezers. We also demonstrate the effects of considering interfaces of different numerical apertures in an optical setup. Thus, we report on the multiple aspects of light-matter interactions for high numerical aperture lens setups, wherein we show through simulations and experiments, the characteristics of such systems that are of use to the broader optics community. © Anita Publications. All rights reserved.
Keywords: Vectorial imaging, Intensity distribution patterns, Amplitude masks, Optical tweezers

References
1. Born M, Wolf E, Principles of optics: electromagnetic theory of propagation, interference, and diffraction of light, 7th edn, (Cambridge University Press), 1999.
2. Hecht E, Optics, (Pearson education, Addison-Wesley), 2002.
3. Gu M, Advanced optical imaging theory, Springer Series in Optical Sciences, 75(1999)1-214.
4. Wolf E, Electromagnetic diffraction in optical systems I. An integral representation of the image field, Proceedings of the Royal Society of London. Series A. 

    Mathematical and Physical Sciences, 253(1959)349-357.
5. Richards B,Wolf E, Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system, Proceedings of the Royal Society of 

    London. Series A. Mathematical and Physical Sciences, 253(1959) 358-371.
6. Youngworth K S,Brown T G, Focusing of high numerical aperture cylindrical-vector beams, Opt Express, 7(2000)77-87.
7. Foreman M R, Török P, Computational methods in vectorial imaging, J Mod Opt, 58(2011)339-364.
8. Rohrbach A, Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory, Phys Rev Lett, 95(2005)168102; 

    doi.org/10.1103/PhysRevLett.95.168102.
9. Hell S, Stelzer E H K, Properties of a 4pi confocal fluorescence microscope, J Opt Soc Am A, 9(1992)2159-2166.
10. Sheppard C J R, Wilson T, Gaussian-beam theory of lenses with annular aperture, IEE Journal on Microwaves Optics and Acoustics, 2(1978)105-112.
11. Wang H, Shi L, Lukyanchuk B, Sheppard C, Chong C T, Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nat Photon, 

      2(2008)501-505.
12. Kozawa Y, Sato S, Focusing property of a double-ring-shaped radially polarized beam, Opt Lett, 31(2006)820-822.
13. Kuga T, Torii Y, Shiokawa N, HiranoT, ShimizuY, Sasada H, Novel optical trap of atoms with a doughnut beam, Phys Rev Lett, 78(1997)4713-4716.
14. Liu T, Tan J, Liu J, Tighter focusing of amplitude-modulated radially polarized vector beams in ultra-high numerical aperture lens systems, Opt Commun, 

      294(2013)21-23.
15. Khonina S N, Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions, Opt Eng, 52(2013)091711; 

      doi.org/10.1117/1.OE.52.9.091711.
16. Sheppard C J R, Choudhury A, Annular pupils, radial polarization, and superresolution, Appl Opt, 43(2004)4322-4327.
17. Patton B R, Burke D, Vrees R, Booth M J, Is phase-mask alignment aberrating your STED microscope?, Methods Appl Fluoresce, 3(2015)024002; 

      doi:10.1088/2050-6120/3/2/024002.
18. Guo H, Weng X, Jiang M, Zhao Y, Sui G, Hu Q, Wang Y, Zhuang S, Tight focusing of a higher-order radially polarized beam transmitting through multi-zone 

      binary phase pupil filters, Opt Express, 21(2013)5363-5372.
19. Bokor N, Davidson N, Generation of a hollow dark spherical spot by 4-pi focusing of a radially polarized Laguerre-Gaussian beam, Opt Lett, 31(2006)149-151.
20. Sales T R M, Morris G M, Axial superresolution with phase-only pupil filters, Opt Commun, 156(1998)227-230.
21. Jabbour T G, Kuebler S M, Vector diffraction analysis of high numerical aperture focused beams modified by two- and three-zone annular multi-phase plates, 

      Opt Express, 14(2006)1033-1043.
22. Huang Z, Hao Z, Zhu L, Axial multifocal binary-phase zone plate for high numerical aperture focusing, Opt Eng, 55(2016)123101; 

      doi.org/10.1117/1.OE.55.12.123101.
23. Gould T J, Burke D, Bewersdorf J, Booth M J, Adaptive optics enables 3d STED microscopy in aberrating specimens, Opt Express, 20(2012)20998-21009.
24. Murray J M, Wei J, Barnes J O, Slagle J E, Guha S, Measuring refractive index using the focal displacement method, Appl Opt, 53(2014)3748-3752.
25. Török P, Varga P, Laczik Z, Booker G R, Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive 

      indices: an integral representation, J Opt Soc Am A, 12(1995)325-332.
26. Török P, Varga P, Konkol A, Booker G R, Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive 

      indices: structure of the electromagnetic field II, J Opt Soc Am A, 13(1996)2232-2238.
27. Mondal D, Dinda S, Bandyopadhyay S N, Goswami D, Polarization induced control of optical trap potentials in binary liquids, Sci Rep, 9(2019)700; 

      doi.10.1038/s41598-018-36856-5.

Vectorial imaging techniques for insights into the principles of optical tweezers.pdf
Sirshendu Dinda and Debabrata Goswami

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 1027-1034


Consideration of freshness and taste of Japanese tomatoes - Comparison of laser biospeckle,

and different sensing technologies with human perception


Uma Maheswari Rajagopalan1,2, Yuya Tanaka2 and Hirofumi Kadono3
1SIT Research Lab Shibaura Institute of Technology, Toyosu, Tokyo, Japan
2Depaerment of Food science and Nutrition, Toyo University, Itakura, Gunma, Japan
3Graduate School of Enviornment Science, Saitama University, Saitama city, Japan

This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

There has been a growing interest in the application of non-invasive laser biospeckle activity in the assessment of agricultural products such as tomato, Indian fruits, apples and so on and compare with other physical measures such as acid and starch content. In this study, we have compared characteristics of tomatoes by optical sensing along with taste and smell measurements in addition to human taste perception. We have employed non-invasive optical method of speckle imaging, smell and taste sensor devices for evaluation of freshness of tomatoes stored at room temperature. Tomatoes purchased from a local supermarket were used for measurements. Movies of biospeckle images acquired with a CMOS camera (1024 × 280 pixels) binned to 240 × 320 pixels sampled at the rate of 15 fps were obtained over a period of 14 sec. Calculating cross-correlation coefficient of biospeckle images at different times with that at time 0 and further quantifying the correlation coefficient (r) at 14th sec as a parameter, it has been found that correlation coefficient decreased as a function of days matching the expectations due to reduction in the cellular activity within the tomato sample due to aging of the sample. We also conducted smell and taste measurements by electronic nose and lipid based taste sensor in addition to human sensing evaluations both of which revealed that the older tomatoes (15 days old) to be tasting better. Comparison of freshness and taste revealed that freshness and taste quality do not always agree. Biospeckle can detect deterioration as early as third day. At the same time, both taste measurement and human perception results suggest for a longer storage to be delicious. © Anita Publications. All rights reserved.
Keywords: Biospeckle, Tomato, Perception, Freshness, Scattering

Consideration of freshness and taste of Japanese tomatoes....pdf
Uma Maheswari Rajagopalan, Yuya Tanaka and Hirofumi Kadono

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 1035-1048


Optical metrology via the photorefractive effect

Arun Anand1 and C S Narayanamurthy2
1Applied Physics Department, Faculty of Technology and Engineering, The M S University of Baroda, Kalabhavan P. B. No 51, Vadodara – 390 001, India
2Department of Physics, Indian Institute of Space Science and Technology(IIST) Valiamala (PO), Thiruvananthapuram 695 547, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

By exploiting the two wave mixing phenomena in crystals of sillienite family like Bi12SiO20 (Bismuth Silicon Oxide) and Bi12TiO20 (Bismuth Titanium Oxide) optical metrological applications like stress and strain measurements and testing of optical elements can be carried out. In this paper, we report physics of two wave mixing phenomena in photorefractive crystals of sillienite family like BSO, BTO and their applications to optical metrology in detail. © Anita Publications. All rights reserved.
Keywords: Photorefractive effect, Two wave mixing, Dynamic holography, Optical metrology

References
    1.    Gower M, Dynamic holograms from crystals, Nature, 316(1985)12-14.
    2.    Yariv A, Yeh P, Optical waves in crystals, Chap 13, (Wiley), 1984.
    3.    Laeri F, Tschudi T,  Albers J,  Coherent cw image amplifier and oscillator using two wave interaction in a BaTiO3-crystal, Opt Commun, 47(1983)387-390.
    4.    Plastis D, Yu J, Hong J, Bias free time integrating optical correlator using a photorefracive crystal, Appl Opt, 24  (1985)3860-386.
    5.    Huignard J P, Marrakchi A, Coherent signal beam amplification in two wave mixing experiments with Bi12SiO20 crystals, Opt Commun, 38(1981)249-254.
    6.    Rajenbach H, Bann S, Refregier P, Joffre P, Huignard J P, Buchkremer H S, Jensen A S, Rasmussen E, Brenner K H, Lohmann G, Compact photorefractive

           correlator for Robotic applications, Appl Opt, 31(1992)5666-5674.
    7.    Huignard J P, Herriau J P, Valentin T, Time-Average holographic interferometry with photoconductive electro-optic Bi12SiO20 crystals, App Opt,

           16(1977)2796-2798.
    8.    Huignard J P, Herriau J P, Aubourg P, Spitz E, Phase conjugate wavefront generation via real-time holography in Bi12SiO20 crystals, Opt Lett,

           4(1979)21-23.    
    9.    Stepanov S I, M P Petrov M P, Efficient unstationary holographic recordings in photorefractive crystals under external alternating electric fields, Opt

           Commun, 53(1985)292-295.
    10.  Tschudi T, Herden A, Goltz J, Klumb H, Laeri F, Albers J, Image amplification by two wave and four wave mixing in BaTiO3 photorefractive crystals, 

            IEE J Quantum Electron, 22(1986)1493-1502.
    11.   Yeh P, Introduction to photorefractive nonlinear optics, (John Wiley & Sons Inc, New York), 1993.
    12.   Solimar L, Webb D J, Grunnet-Jepsen A, The physics and applications of photorefractive materials, Oxford series in optical imaging and sciences,

            (Clarendon Press, Oxford), 1996.
    13.   Stepanov S I, Petrov M P, Nonstationary holographic recording for efficient amplification and phase conjugation in: Photorefractive Materials and

            Applications I, Topics Appl Phys, (eds) Gunter P, Huignard J P, Vol 61, (Springer, Berlin, Heidelberg), 1988.
    14.   Hall T J, Jaura R, Connors L M, Foote P D, The photorefractive effect : A review, Prog Quantum Electron, 10(1985)77-144.
    15.   Kamshilin A A, Mokrushina E V, Petrov M P,  Adaptive holographic interferometers operating through self-diffraction of recording beams in  

            photorefractive crystals, Opt Eng, 28(1989)580-588.
    16.   Troth R C, Dainty J C, “ Holographic interferometry using an-isotropic self diffraction in Bi12SiO20, Opt Lett, 16(1991)53-55.
    17.   Vest C M, Holographic interferometry, (John Willey & Sons: New York), Chapter 7, 1971.
    18.   Nisida M, Saito H, A new interferometric method of two dimensional stress analysis, Exp Mech, 4(1964)366-376.
    19.   Fourney M E, Application of holography to photoelasticity, Exp Mech, 8(1968)33-38.
    20.   Hovanesian J D, Brcic J D, Powell R L, A new stress-optic method :stress-holointerferometry, Exp Mech, 8(1968)362-368.
    21.   Fourney M E, Mate K V, Further applications of holograph to photoelasticity, Exp Mech, 10(1970)177-186.
    22.   Holloway D C, Johnson R H, Advancements in holographic photoelasticity, Exp Mech, 11(1971)57-63.
    23.   Kubo H, Nagata R, Holographic photoelasticity with depolarized object wave, Jpn J Appl Phys, 15(1976)641-644.
    24.   Uozato H, Nagata R, Holographic photoelasticity by using dual hologram method, Jpn J Appl Phys, 16(1977)95- 100.
    25.   Narayanamurthy C S,  Dainty J C, Real-time holographic photoelasticity using BSO, Opt Commun, 91(1992)23-28.
    26.   Hecht E, Optics, 2nd edn, (Reading M A: Addision-Wesley), Chapter 8, 1987.
    27.   Jenkins F A, White H E, Fundamentals of Optics, 4th edn, (Auckland: McGraw-Hill International Book Co), Chapter 32, 1982.
    28.   Anand A, Narayanamurthy C S, Faraday rotation measurement with photorefractive Bi12TiO20, Opt  Laser Techno,  34(2002)605-611.

Optical metrology via the photorefractive effect.pdf
Arun Anand and C S Narayanamurthy

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 1091-1102


Multi-pass, multi-beam and multi-wavelength optical interferometries


Rajpal S Sirohi
Department of Physics, Alabama A&M University, Huntsville, AL 35802, USA
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

Optical interferometry is perhaps the oldest precision measurement technique that has evolved in its various variants due to the developments in optical sources and detector systems, and varied applications. Some of the variants are developed to enhance the accuracy of measurement and also the ease of measurement. This paper discusses the theory of multi-pass, multi-beam and multi-wavelength interferometries. © Anita Publications. All rights reserved.
Keywords: Two-beam Interferometry, Multi-beam Interferometry, Multi-wavelength Interferometry

References
    1.    Born M, Wolf E, Principles of Optics, 4th edn, (Pergamon Press), 1970.
    2.    Candler C, Modern Interferometers, (Hilger and Watts, London), 1951.
    3.    Steel W H, Interferometry, (Cambridge University Press, Cambridge, UK), 1983.
    4.    Hariharan P, Optical Interferometry, (Academic Press), 2003.
    5.    Langenbeck P, Multipass Twyman–Green Interferometer, Appl Opt, 6(1967)1425-1426.
    6.    Langenbeck P, Multipass Interferometry, Appl Opt, 8(1969)545-552.
    7.    Bubis I Y, Multipass Interferometer for Surface Shape Inspection, Sov J Opt Technol, 39(1972)411-413.
    8.    Gerchman M C, Hunter G C, Differential Technique for Accurately Measuring the Radius of Curvature of Long Radius Concave Optical Surfaces, Proc

           SPIE, 192(1979)75-84.
    9.    Hariharan P, Sen D, Double-Passed Two-Beam Interferometers, J Opt Soc Am, 50(1960)357-361.
    10.   Zhang Tiejun, Yonemura Motoki, Multipass Michelson interferometer with the use of a wavelength-modulated laser diode, Appl Opt, 35(1996)5650-5656.
    11.   Pisani M, Multiple reflection Michelson interferometer with picometer resolution, Opt Exp, 16(2008)21558-21563.
    12.   Kumar V C P, Joenathan C, Ganesan A, Somasundram U, Increasing the sensitivity for tilt measurement using a cyclic interferometer with multiple

            reflections, Opt Eng, 55(2016)084103; doi.org/10.1117/1.OE.55.8.084103
    13.   Joenathan C, Naderishahab T, Bernal A, KrovetzA B, Pretheesh Kumar V C, Ganesan A R., Nanoscale tilt measurement using a cyclic interferometer with

            polarization phase stepping and multiple reflections, Appl Opt, 57(2018)B52-B58.
    14.   Joenathan C, Bernal A, Woonghee Y, Bunch R M, Hakodac C, Dual-arm multiple-reflection Michelson interferometer for large multiple reflections and

            increased sensitivity, Opt Eng, 55(2016) 024101; doi. org/10.1117/1.OE.55.2.024101
    15.   Vikram C S, Sirohi R S, Use of phase holograms for phase difference amplification, Opt Commun, 2(1971)444-446.
    16.   Brossel J, Multiple-beam localized fringes: part I. - Intensity distribution and localization, Proc Phys Soc, 59(1947) 224-234.    
    17.   Born M, Wolf E, Principles of Optics, fourth edition, (Pergamon Press), 1970, pp 351-358.
    18.   Tolansky S, Multiple-Beam Interferometry of Surfaces and Films, (Oxford University Press, Oxford, (1948), Dover, New York), 1970.
    19.   Roychoudhuri C, Multiple-Beam Interferometers, in Optical Shop Testing, (Ed) Malacara D, (John Wiley & Sons, Inc., Hoboken, New Jersey), 2007.
    20.   Murty M V R K, The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a Visible Gas Laser Source, Appl Opt, 3(1964)531-534.
    21.   Mallick S, Rousseau M, Multiple-Beam Lateral-Shear Interferometer, Appl Opt, 12(1973)2305-2308.
    22.   Sirohi R S, Eiju T, Matsuda K, Barnes T H, Multiple-beam lateral shear interferometry for optical testing, Appl Opt, 34(1995)2864-2870.
    23.   Sirohi Rajpal S, Eiju Tomaoki, Matsuda Kiyofumi, Barnes Thomas H, Reflection Multiple beam wedge plate shear interferometry for lens testing, Opt Rev,

            1(1994)293-295.
    24.   Sirohi R S, Eiju T K, Matsuda, Senthilkumaran P, Multiple beam wedge plate shear interferometry in transmission, J Mod Opt, 41(1994)1747-1755.
    25.   Senthilkumaran P, Sriram K V, Kothiyal M P, Sirohi R S, Multiple beam wedge plate shear interferometer for collimation testing, Appl Opt,

            34(1955)1197-1202.
    26.   Matsuda Kiyofumi, Barnes Thomas H, Oreb Bob F, Sheppard Colin J R, Focal-length measurement by multiple-beam shearing interferometry, Appl Opt,

            38(1999)3542-3548.
    27.   Decker J E, Schödel R, Bönsch G, Next-Generation Kösters Interferometer, Proceedings of SPIE, 5190(2003) 14-23.
    28.   Christopher Burns, Deane A Gardner, Robert C Quenelle, Lawrence J Wuerz, A New Microcomputer-Controlled Laser Dimensional Measurement and

            Analysis System, Hewlett-Packard Journal, 34(1983)3-13.
    29.   Lavan Michael, Cadwallender W K, Deyoung T F, Heterodyne interferometer to determine relative optical phase changes, Review of Scientific

            Instruments, 46(1975)525-527.
    30.   Ohtsuka Y, Sasaki I, Laser heterodyne measurement of small arbitrary displacements, Opt Commun, 10(1974) 362-365.
    31.   Stone J A, Stejskal A, Howard L, Absolute interferometry with a 670-nm external cavity diode laser, Appl Opt, 38(1999)5981-5994.
    32.   Dändliker R, Hug K, Zimmermann E, Schnell U, Multiple Wavelength and White-Light Interferometry, 2nd Japan-France Congress on Mechatronics, Nov

            1-3, Takamatsu, Japan, (1994)
    33.   de Groot P, Deck L, Surface profiling by analysis of white-light interferograms in the spatial frequency domain, J Modern Optics, 42(1995)389-401.
    34.   Mehta D S, Srivastava V, White Light Phase-Shifting Interference Microscopy for Quantitative Phase Imaging of Red Blood Cells, Fringe 2013 – 7th

            International Workshop on Advanced Imaging and Metrology, 581-584, Wolfgang Osten (ed), Springer, Verlag Heidelberg, 2014.

Multi-pass, multi-beam and multi-wavelength optical interferometries.pdf
Rajpal S Sirohi

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 1127-1134


Surface plasmons resonance based refractive index sensors using bimetallic configurations


Ashish Bijalwan and Vipul Rastogi
Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

In this paper bimetallic grating-based sensors using combinations of different metals (Au, Ag and Al) have been designed for refractive index sensing and Haemoglobin sensing. Au, being more chemically stable metal, is commonly used as SPR active metal, though it does not provide narrower SPR curve. Whereas, Al can provide narrower SPR curve but is chemically instable. Bimetallic grating based refractive index sensors exhibit narrower SPR curves and better-Quality Factors compared to conventional Au-grating based sensors. Numerical simulations based on rigorous coupled wave analysis confirm that the FWHM of conventional Au-grating based sensors could be reduced by replacing the Au film with Ag or Al. The issue of the oxidation of Al is also discussed in this study. As a solution, we propose two different structures (i) Au-grating over Au coated Al film and (ii) Au-Al2O3-grating over Al film.The proposed sensors are stable and can offer the Quality Factor of more than 245 RIU-1. © Anita Publications. All rights reserved.
Keywords: Surface plasmon resonance (SPR), Haemoglobin sensing, Au-grating, Quality Factor

References
    1.    Homola J, Yee S S, Gauglitz G, Surface plasmon resonance sensors: review, Sens Actuators B: Chem, 54(1999)3-15.
    2.    Roh S, Chung T, Lee B, Overview of the characteristics of micro- and nano structured surface plasmon resonance sensors, Sensors, 11(2011)1565-1588.
    3.    Kretschmann E, Raether H, Radiative decay of nonradiative surface plasmons excited by light, Z Naturforsch, 23(1968)2135-2136.
    4.    Fano U, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves), J Opt Soc Am,

           31(1941)213-222.
    5.    Hutley M C, Maystre D, The total absorption of light by a diffraction grating, Opt Commun, 19(1976)431-436.
    6.    Guo J, Keathley P D, Hastings J T, Dual-mode surface plasmon-resonance sensors using angular interrogation, Opt Lett, 33(2008)512-514.
    7.    Lin K, Lu Y, Chen J, Zheng R, Wang P, Ming H, Surface plasmon resonance hydrogen sensor based on metallic grating with high sensitivity, Opt

           Express,16(2008)18599-18604.
    8.    Cai D, Lu Y, Lin K, Wang P, Ming H, Improving sensitivityof SPR sensor based on grating by double-dips method (DDM), Opt Express,

           16(2008)14597-14602.
    9.    Ichihashi K, Mizutani Y, Iwata T, Enhancement of the sensitivity of a diffraction-grating-based surface plasmon resonance sensor utilizing the first and

           negative-second-order diffracted lights, Opt Rev, 21(2014)728-731.
    10.  Dhibi A, Khemiri M, Oumezzine M, Theoretical study ofsurface plasmon resonance sensors based on 2D bimetallic alloygrating, Phot Nano Fund Appl,

           22(2016)1-8.
    11.  Su W, Zheng G, Li X, Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating, Opt Commun,

          285(2012)4603-4607.
    12.  Hu C, Liu D, High-performance grating coupled surface plasmon resonance sensor based on Al-Au bimetallic layer, Mod Appl Sci, 4(2010)8-13.
    13.  Moharam M G, Grann E B, Pommet D A, Gaylord T K, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of

           binary gratings, J Opt Soc Am A, 12(1995)1068-1076.
    14.  Lee W, Degertekin F L, Rigorous coupled-wave analysis of multilayered grating structures, J Lightwave Technol, 22(2004)2359-2363.
    15.  Homola J, Koudela I, Yee S S, Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison, Sens Actuators

           B, 54(1999)16-24.
    16.  Sharma A K, Gupta B D, On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors, J Appl Phys,

           101(2007)093111; doi.org/10.1063/1.2721779.
    17.  Lahav M, Vaskevich A, Rubinstein I, Biological sensing using transmission surface plasmon resonance spectroscopy, Langmuir, 20(2004)7365-7367.
    18.  Kalyuzhny G, Schneeweiss M A, Shanzer A, Vaskevich A, Rubinstein I, Differential plasmon spectroscopy as a tool for monitoring molecular binding to

           ultrathin gold films, J Am Chem Soc, 123(2001)3177-3178.
    19.  Friebel M, Martina M, Model function to calculate the refractive index of native Hemoglobin in the wavelength range of 250-1100 nm dependent on

           concentration, Appl Opt, 45(2006)2838-2842.

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 1135-1148

 

Technology development for precision optics fabrication

Amitava Ghosh and Kamal K Pant
Instruments R & D Establishment, Raipur Road, Dehradun-248 008, India
This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

Fabrication of conventional optics is an old age technology primarily includes flat and spherical surfaces. Usage of rotationally symmetric aspheric surfaces providesmore degree of freedom to an optical designer to control aberrations and improving the performance of the imaging system. Development of CNC based manufacturing technologies has given the opportunity to fabricate complex aspheric and non-rotationally symmetric freeform surfaces. An overview of the manufacturing trends for precision optics is presented with technological transformation from conventional to modern CNC based techniques those are suitable for complex aspheric and freeform fabrication along with suitable metrology feedback. © Anita Publications. All rights reserved.
Keywords: Aspheric and freeform optics, CNC optical manufacturing, Optical tower, SHS based freeform metrology.

References
    1.   Walker D, Beaucamp A, Dunn C, Freeman R, Marek A, McCavana G, Morton R, Riley D, First results on free-form polishing using the Precessions process,

          in Proc ASPE Winter Conference: Freeform Optics, Design, Fabrication, Metrology, Assembly, 2004.
    2.   Zhang X, Zheng L, He X, Zhang F, Yu S, Shi G, Zhang B,Liu Q, Wang T,Design and fabrication of imaging optical systems with freeform surfaces, Proc

          SPIE 8486 (2012); doi.org/10.1117/12.928387.
    3.   Fess E, Bechtold M, Wolfs F, Bechtold R, Developments in precision optical grinding technology, Proceedings Volume 8884, Optifab 2013; 88840L (2013);

          doi.org/10.1117/12.2029334.
    4.   Hall C, Jones A,  Messner B, Magnetorheological Finishing of freeform optics. Proc, SPIE 10316, Optifab 2007: Technical Digest, 103160J (14 May 2007);

          doi.org/10.1117/12.719886                                                                                 
    5.   Deng W.-J, Zheng L.-g, Nano-scale finishing of off-axis aspheric mirror by ion beam figuring, Proc SPIE 9298, International Symposium on Optoelectronic

         Technology and Application 2014: Imaging Spectroscopy; and Telescopes and Large Optics, 92981C (18 November 2014); doi.org/10.1117/12.2071418.
    6.   Liu Y.-M, Lawrence G N, Koliopoulos C L, Subaperture testing of aspheres with annular zones, Appl Opt, 27(1988)4504-4513.
    7.   Pfund J, Lindlein N,  Schwider J, Nonnull testing of rotationally symmetric aspheres: a systematic error assessment, App Opt, 40(2001)439-446.
    8.   Cheng D, Wang Y, Hua H, Free form optical system design with differential equations. Proc SPIE 7849, Optical Design and Testing IV, 78490Q (5

          November 2010); doi.org/10.1117/12.869690.
    9.   Mishra, V., Burada D R,Pant K K, Karar V, Jha S, Khan G S, Form error compensation in the slow tool servo machining of freeform optics, Int J Adv Manuf

          Tech, 105(2019)1623-1635.
   10.  Patterson S,  Magrab E, Design and testing of a fast tool servo for diamond turning, Precis Eng, 7(1985)123-128.
   11.  Zernike von F, Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode.Physica, 7-12(1934)689-704.
   12.  Forbes G, Characterizing the shape of freeform optics, Opt express, 20(2012)2483-2499.
   13.  Swantner W,  Chow W W, Gram–Schmidt orthonormalization of Zernike polynomials for general aperture shapes. Appl Opt, 33(1994)1832-1837.
   14.  Ye J, Li X, Wang S, Sun W, Wang W,Yaun Q, Modal wavefront reconstruction over general shaped aperture by numerical orthogonal polynomials, Opt Eng,

          54(2015)034105; doi.org/10.1117/1.OE.54.3.034105.
   15.  Abramowitz M, Stegun I A (eds), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Vol 55, US Government printing

          office, 1948.   
   16.  Cheng D, Wang Y, Hua H, Talha M M, Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform

          prism, Appl Opt, 48(2009)2655-2668.
   17.  Chrisp M P, Primeau B, Echter M A, Imaging freeform optical systems designed with NURBS surfaces, Opt Eng, 55(2016)071208; doi.org/10.1117

          /1.OE.55.7.071208
   18.  Cakmakci O, Sophie Vo, Thompson K P, Rolland J P,  Application of radial basis functions to shape description in a dual-element off-axis eyewear display:

          Field-of-view limit, J Soc Inf Display, 16(2008)1089-1098.
   19.  Fang F, Zhanga X D, Weckenmann A, Zhang G X, Evans C, Manufacturing and measurement of freeform optics, CIRP Annals, 62(2013)823-846.
   20.  Walker D D, Beaucamp A T H, Brooks D, Freeman R, King A, McCavana G, Morton R, Riley D, Simms J, Novel CNC polishing process for control of

          form and texture on aspheric surfaces, Volume 4767, Current Developments in Lens Design and Optical Engineering III; (2002); doi.org/10.1117/12.451322.
   21.  Prochaska F, Matouse O, Tomka D, Polak J, Poláková I, CNC subaperture polishing process arrangement for microroughness minimisation, Proc SPIE 

          Volume 9442, Optics and Measurement Conference 2014; 944216 (2015); doi.org/10.1117/12.2087102.
   22.  Walker D, Beaucamp A T H, Doubrovski V, Dunn C, Freeman R, McCavana G, Morton R, Riley D, Simms J,  Wei X, New results extending the

          precessions process to smoothing ground aspheres and producing freeform parts, Proc SPIE 5869, Optical Manufacturing and Testing VI, 58690E (24 August

          2005); doi.org/10.1117/12.617067.
   23.  Schaefer J P, Point diamond turning: Progress in precision, International Optical Design,Technical digest (CD), OSA, 2006; doi.org/10.1364

          /IODC.2006.ThB1
   24.  Khan G, Bichra M, Grewe A, Sabitov N,  Sabitov N, Mantel K, Harder I, Berger A, Lindlein N, Sinzinger S, Metrology of freeform optics using diffractive

          null elements in Shack-Hartmann sensor, Conference: Proc  EOSMOC & EOSOF Conference 2013.
   25.  Burada D R, Pant K K, Mishra V, M Bichra M, Development of a metrology technique suitable for in situ measurement and corrective manufacturing of

          freeform optics,  Adv Opt Technol, 8(2019)203-215.
   26.  Takeuchi H, Yosizumi K, Tsutsumi H, Ultrahigh accurate 3-D profilometer using atomic force probe of measuring nanometer, Proc ASPE Winter Topical

          Meeting on Free-form optics: Design, Fabrication, Metrology and Assembly,  (2004)102-107.
   27.  Su P, Oh C J, Parks R E, Burge J H, Swing-arm optical CMM for aspherics, Proc SPIE 7426, Optical Manufacturing and Testing VIII, 74260J (21 August

          2009); doi.org/10.1117/12.828493
   28.  Chen S, Li S, Dai Y, Iterative algorithm for subaperture stitching interferometry for general surfaces, J Opt Soc Am A, 22(2005)1929-1936.
   29.  Pant K K, Burada D R, Bichra M, Singh M P, Subaperture stitching for measurement of freeform wavefront, Appl Opt, 54(2015)10022-10028.
   30.  Khan G S, Mantel K, Harder I, Lindlein N, Schwider J, Design considerations for the absolute testing approach of aspherics using combined diffractive

          optical elements. Appl Opt, 46(2007)7040-7048.
   31.  Burada D R, Pant K K, Bichra M, Khan G S, Sinzinger S, Shakher C, Experimental investigations on characterization of freeform wavefront using Shack–

          Hartmann sensor, Opt Eng, 56(2017)084107; doi.org/10.1117/1.OE.56.8.084107

Technology development for precision optics fabrication.pdf
Amitava Ghosh and Kamal K Pant

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 1149-1160


Investigations of magnetic resonances with modulated laser excitation in the atomic

medium for magnetometry applications

Gour S Pati and Renu Tripathi*
Division of Physics, Engineering Mathematics & Computer Science (PEMaCS),
Delaware State University, Dover, DE 19901, USA

This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

We have investigated magnetic resonances produced by resonant laser excitation of the atomic medium with modulated light. Magnetic resonances in two different atomic media are studied. First, we have studied magnetic resonances using laser excitation of D1 transition in a pure isotope rubidium cell. We explain the origin of magnetic resonances using two-photon Lambda transitions, and simulate magnetic resonances using a theoretical model based on the density-matrix equations. Second, we have studied magnetic resonances in fluorescence from a sodium cell. This study is intended for performing remote magnetometry experiments with mesospheric sodium atoms. We have also demonstrated a new correlation technique, which can be performed over a wide frequency range for measuring an unknown magnetic field in magnetometry. Present studies are aimed towards improving our understanding of magnetic resonances for magnetometry applications. © Anita Publications. All rights reserved.
Keywords: Nonlinear magneto-optic rotation (NMOR), Alkali Atoms, Magnetometry

References
    1.    Budker D, Kimball D F J, Optical Magnetometry, (Cambridge University Press), 2013.
    2.    Sander T H, Preusser J, Mhaskar R, Kitching J, Trahms L, Knappe S, “Magnetoencephalography with a chip-scale atomic magnetometer,” Biomed Opt

           Express, 3(2012) 27167-27172.
    3.    Schultz G, Mhaskar R, Prouty M, Schultz G, Mhaskar R, Prouty M, Miller J, “Integration of micro-fabricated atomic magnetometers on military systems,”

           Proc SPIE, 9823(2016)982318; doi.org/10.1117/12.2224192.
    4.    Schwindt P D D, Knappe S, Shah V, Hollberg L, Kitching J, Liew L A, Moreland J, “Chip-scale atomic magnetometer,” Appl Phys Lett, 85(2004)

           6409-6411.
    5.    Kitching J, Chip-scale atomic devices, Appl Phys Rev, 5(2018)31302; doi.org/10.1063/1.5026238
    6.    Budker D, Romalis M, Optical magnetometry, Nat Phys, 3(2007)227-234.
    7.    Kominis I K, Kornack T W, Allred J C, Romalis M V, A subfemtotesla multichannel atomic magnetometer, Nat Phys, 422(2003)596-599.
    8.    Budker D, Kimball D F, Rochester S M, Yashchuk V V, Zolotorev M, Sensitive magnetometry based on nonlinear magneto-optical rotation, Phys Rev A,

           62(2003)43403; doi. org/10.1103/PhysRevA.62.043403
    9.    Acosta V, Ledbetter M P, Rochester S M, Budker D, Kimball D F J, Hovde D C, Gawlik W, Pustelny S, Zachorowski J, Yashchuk V V, Nonlinear magneto-

           optical rotation with frequency-modulated light in the geophysical field range, Phys Rev A – At Mol Opt Phys, 73(2006)1-8.
    10.  Gawlik W, Krzemien L, Pustelny S, Sangla D, Zachorowski J, Graf M, Sushkov A O, Budker D, Nonlinear Magneto-Optical Rotation with Amplitude-

           Modulated Light, Appl Phys Lett, 88(2006)131108; doi.org/10.1063/1.2190457
    11.  Higbie J M, Rochester S M, Patton B, Holzlohner R, Calia D B, Budker D, Magnetometry with mesospheric sodium, Proc Natl Acad Sci,

           108(2011)3522-3525.
    12.  Warren Z, Shahriar M S, Tripathi R, Pati G S, Experimental and theoretical comparison of different optical excitation schemes for a compact coherent

           population trapping Rb vapor clock, Metrologia, 54(2017)418-431.
    13.  Renzoni F, Maichen W, Windholz L, Arimondo E, Coherent population trapping with losses observed on the Hanle effect of the D 1 sodium line, Phys Rev

           A, 55(1997)3710-3718.
    14.  Renzoni F, Zimmermann C, Verkerk P, Arimondo E, Enhanced absorption Hanle effect on the Fg = F → Fe = F + 1 closed transitions, J Opt B:Quantum

           Semiclassical Opt, 7(2001)S7-S14.
    15.  Felinto D, Cruz L S, de Oliveira E A, Florez H M, de Miranda M H G, Nussenzveig P, Martinelli M, Tabosa J W R, Physical interpretation for the

           correlation spectra of electromagnetically-induced-transparency resonances, Opt Express, 21(2013)485-491.

Investigations of magnetic resonances with modulated laser excitation in the atomic medium for magnetometry applications.pdf
Gour S Pati and Renu Tripathi

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 1163-1173


Light Scattering by Turbid Media


M R Shenoy* and Kalpak Gupta
Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110 016

This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

Study of scattered light has emerged as an important and practical method of analysing a turbid medium in a fast and non-invasive manner. From light scattering measurements, the scattering parameters of the turbid medium can be estimated, which in turn depend on the intrinsic properties of the scatterers. Measurements of multiple physical quantities such as transmitted light, reflected light and scattered light at different angles lead to a better estimation of the scattering parameters. Using the scattering theory and simulations such as Monte-Carlo technique, in conjunction with experiments, leads to substantial reduction in the number of measurements required, and help in optimizing efficient and compact devices for practical use. There is also scope for studies on mixtures of turbid media, and the effect of various changes in the ambience, in specific applications. In this paper, we first review the basics of light scattering from turbid media, and briefly discuss the methodologies to simulate and characterize a turbid medium. We then detail some of our recent work on estimation of the scattering parameters of a turbid medium, including the use of fiber-optic probes as turbidity sensors, with potential applications in remote sensing and telemetry. © Anita Publications. All rights reserved.
Keywords: Light scattering, Turbid media, Optical properties, Monte-Carlo simulation

References
    1.    Hulst H C van de, Light Scattering by Small Particles, (Wiley, New York), 1957.
    2.    Bohren C F, Huffman D R, Absorption and Scattering of Light by Small Particles, (Wiley, USA), 1983.
    3.    Bevilacqua F, Piguet D, Marquet P, Gross J D, Tromberg B J, Depeursinge C, In vivo local determination of tissue optical properties: applications to human

           brain, Appl Opt, 38(1999)4939-4950.
    4.    Hassaninia I, Bostanabad R, Chen W,Mohseni H, Characterization of the Optical Properties of Turbid Media by Supervised Learning of Scattering Patterns,

           Sci Rep, 7(2017)15259; doi.org/10.1038/s41598-017-15601-4
    5.    Augsten C, Kiselev M A, Gehrke R, Hause G, Mäder K, A detailed analysis of biodegradable nanospheres by different techniques—A combined approach to

           detect particle sizes and size distributions, J Pharm Biomed Anal, 47(2008)95-102.
    6.    Morrison I D, Grabowski E F, Herb C A, Improved techniques for particle size determination by quasi-elastic light scattering, Langmuir, 1(1985)496-501.
    7.    Agrawal Y C, Pottsmith H C, Laser diffraction particle sizing in STRESS, Cont Shelf Res, 14(1994)1101-1121.
    8.    Prerana, Shenoy M R, Pal B P, Gupta B D, Design, analysis, and realization of a turbidity sensor based on collection of scattered light by a fiber-optic probe,

           IEEE Sens J, 12(2012)44-50.
    9.    Shenoy M R, Optical fibre probes in the measurement of scattered light: Application for sensing turbidity, Pramana, 82(2014)39-48.
    10.  Cheong W F, Prahl S A, Welch A J, A review of the optical properties of biological tissues, IEEE J Quantum Electron, 26(1990)2166-2185.
    11.  Kramer A, Paul T A, Fiber-Optic Probes as Sensors for Diffuse Backscattering, in Advanced Photonics & Renewable Energy (21-24 June, 2010),

           Karlsruhe, Germany, paper SThD2.
    12.  Wang L V, Wu H-I, Biomedical Optics: Principles and Imaging, (John Wiley and Sons, Inc., Hoboken, New Jersey), 2007.
    13.  Prerana, Shenoy M R, Pal B P, Method to determine the optical properties of turbid media, Appl Opt, 47(2008) 3216-3220.
    14.  Prahl S A, Van Gemert M J C, Welch A J, Determining the optical properties of turbid media by using the adding-doubling method, Appl Opt,

           32(1993)559-568.
    15.  Mishchenko M I, Travis L D, Lacis A A, Scattering, absorption, and emission of light by small particles, (Cambridge University Press, UK), 2002.
    16.  Wang L, Jaques S L, Zheng L, MCML-Monte Carlo modeling of light transport in multi-layered Tissues, Comput Methods Programs Biomed,

           47(1995)131-146.
    17.  Friebel M, Roggan A, Müller G, Meinke M, Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo

           simulations with hematocrit-dependent effective scattering phase functions, J Biomed Opt, 11(2006)034021; doi.org/10.1117/1.2203659
    18.  Graaff R, Koelink M H, de Mul F F M, Zijlstra W G, Dassel A C M, Aarnoudse J G, Condensed Monte Carlo simulations for the description of light

           transport, Appl Opt, 32(1993)426-434.
    19.  Koelink M H, De Mul F F M, Greve J, Graaff R, Dassel A C M, Aarnoudse J G, Laser Doppler blood flowmetry using two wavelengths: Monte Carlo

           simulations and measurements, Appl Opt, 33(1994)3549-3558.
    20.  Zhu C, Liu Q, Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study, Opt

           Express, 19(2011)17799-17812.
    21.  Gupta K, Shenoy M R, Method to determine the anisotropy parameter g of a turbid medium, Appl Opt, 57(2018) 7559-7563.
    22.  Reynolds L O, McCormick N J, Approximate two-parameter phase function for light scattering, ‎J Opt Soc Am, 70(1980)1206-1212.
    23.  Pickering J W, Prahl S A, van WieringenNiek, Beek J F,Sterenborg H J C M, van Gemert M J C, Double-integrating-sphere system for measuring the

           optical properties of tissue, Appl Opt, 32(1993)399-410.
    24.  Campbell C G, Laycak D T, Hoppes W, Tran N T, Shi F G, High concentration suspended sediment measurements using a continuous fiber optic in-stream

           transmissometer, J Hydrol, 311(2005)244-253.
    25.  van Staveren H J, Moes C J M, van Marie J, Prahl S A, van Gemert M J C, Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,

           Appl Opt, 30(1991)4507-4514.
    26.  Mishchenko M I, Far-field approximation in electromagnetic scattering, J Quant Spectrosc Radiat Transf, 100(2006) 268-276.
    27.  Berg M J, Sorensen C M, Chakrabarti A, Extinction and the optical theorem. Part I. Single particles, J Opt Soc Am A, 25(2008)1504-1513.
    28.  Gupta K, Shenoy M R, Determination of the Size of Microspheres in Monodisperse Turbid Solutions, in Frontiers in Optics+Laser Science APS/DLS

           (15-19 September, 2019), Washington, DC, United States, paper JTu3A.29.
    29.  Pin W, Ming L Y, Han C B, Measurement of the anisotropy factor with azimuthal light backscattering, Optoelectron Lett, 10(2014)470-472.
    30.  Sun J, Fu K, Wang A, Lin A W H, Utzinger U, Drezek R,Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance

           spectroscopy: computational models and experimental measurements, Appl Opt, 45(2006) 8152-8162.
    31.  Bryant G, Thomas J C, Improved Particle Size Distribution Measurements Using Multiangle Dynamic Light Scattering, Langmuir, 11(1995)2480-2485.
    32.  Borecki M, Intelligent Fiber Optic Sensor for Estimating the Concentration of a Mixture-Design and Working Principle, Sensors, 7(2007)384-399.
    33.  Bergougnoux L, Ripault J M, Firpo J L, André J, Monte Carlo calculation of backscattered light intensity by suspension: comparison with experimental

          data, Appl Opt, 35(1996)1735-1741.
    34.  Fairuz A, Omar B, Zubir M, Matjafri B, Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity,

           Sensors, 9(2009) 8311-8335.
    35.  Dogliotti A I, Ruddick K G, Nechad B, Doxaran D, Knaeps E, A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and

           estuarine waters, Remote Sens Environ, 156(2015)157-168.
    36.  Volten H, Muñoz O, Rol E, de Haan J F, Vassen W, Hovenier J W, Muinonen K, Nousiainen T,Scattering matrices of mineral aerosol particles at 441.6 nm

           and 632.8 nm, J Geophys Res Atmos, 106(2001)17375-17401.
    37.  Gupta K, Dora A K, Shenoy M R, Performance Enhancement of Fiber Optic Turbidity Sensor through Design Modifications, in International Conference

           of Advances in Optics and Photonics, (23-26 November 2017), Hisar, India, paper OP71.
    38.  Shenoy M R, Kaur P, Fiber-Optic Turbidity Sensor with a 2-Fiber Optrode in a Novel Scheme, in Frontiers in Optics 2012/Laser Science XXVIII(2012).
    39.  Kienle A, Patterson M S, Ott L, Steiner R, Determination of the scattering coefficient and the anisotropy factor from laser Doppler spectra of liquids

           including blood, Appl Opt, 35(1996)3404-3412.
    40.  Gupta K, Shenoy M R, Light Scattering from Mixtures of Turbid Media: Determination of Interaction Coefficient, in International Conference on Optics &

           Electro-Optics (19-22 October, 2019), Dehradun, India, paper OIM-PP-09.

Light Scattering by Turbid Media.pdf
M R Shenoy and Kalpak Gupta

___________________________________________________________________________________________________________________________________

Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 1175-1185


Variational method for the modes of optical fibers

Anurag Sharma
Physics Department, Indian Institute of Technology Delhi
 New Delhi – 110 016, India

This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics
___________________________________________________________________________________________________________________________________

Variational method has been used for modal analysis of single mode optical fibers for over 40 years and it continues to play an important role in such analysis. In this paper, we look at some of these analyses and discuss some of the recent advances in this direction. © Anita Publications. All rights reserved.
Keywords: Single Mode Fibers, Variational Method, Microstructured Fibers
References
    1.    Kao K C, Hockham G A, Dielectric-fibre surface waveguides for optical frequencies, IEE Proc, 133(1966)1151-1158.
    2.    Snitzer E, Cylindrical Dielectric Waveguide Modes, J Opt Soc Am, 51(1961)491-498.
    3.    Snyder A W, Asymptotic Expressions for Eigenfunctions and Eigenvalues of a Dielectric or Optical Waveguide, IEEE Microw Theory Tech MTT-17

           (1969)1130-1138.
    4.    Gloge D, Weakly guiding fibers, Appl Opt, 10(1971)2252-2258.
    5.    Ghatak A K, Lokanathan S, Quantum Mechanics: Theory and Applications, 6th Edn, (Trinity Press Laxmi Publications, New Dehli India), 2019.
    6.    Schiff L L, Quantum Mechanics, (Mc-GraHill, New York), 1968.
    7.    Marcuse D, Gaussian approximation of the fundamental modes of graded-index fibers, J Opt Soc Am, 68(1978)103-109.
    8.    Snyder A W, Sammut R A, Fundamental (HE11) modes of graded optical fibers, J Opt Soc Am, 69(1979)1663-1671.
    9.    Sharma A, Ghatak A K, A Variarional Analysis of Single Mode Graded-Indexing Fibers , Opt Commun, 36(1981) 22-24
    10.  Sharma A, Hosain S I, Ghatak A K, The fundamental mode of graded-index fibres: simple and accurate variational methods, Opt Quantum Electron,

           14(1982)7-15.
    11.  Ghatak A K, Srivastava R, Faria I, Thyagarajan K, Tewari R, Accurate method for characterising single-mode fibres: theory and experiment, Electro

           Lett,19(1983)97-99.
    12.  Hosain S I, Sharma S, Ghatak A K, Splice-loss evaluation for single-mode graded-index fibers, Appl Opt, 21(1982)2716-2720.
    13.  Mishra P K, Hosain S I, Goyal I C, Sharma A, Scalar variational analysis of single mode, graded-core, W-type fibres, Opt Quant Electron,

           16(1984)287-296.
    14.  Sakai J I, Kimura T, Large-core, broadband optical fiber, Opt Lett, 1(1977)169-171.
    15.  Hosain S I, Sharma E K, Sharma A, Ghatak A K, Analytical approximations for the propagation characteristics of dual-mode fibers, IEEE J Quant

           Electron, QE-19, (1983)15-21; 10.1109/JQE.1983.1071720
    16.  Knight J C, Birks T A, Russell P S J, Atkin D M, All-silica single-mode optical fiber with photonic crystal cladding, Opt Lett, 21(1996)1547-1549.
    17.  Birks T A, Knight J C, Russell P S J, Endlessly single-mode photonic crystal fiber, Opt Lett, 22(1997)961-963.
    18.  Sharma A, Chauhan H, A new analytical model for the field of microstructured optical fibers, Opt Quant Electron, 41(2009)235-242.
    19.  Sharma D K, Sharma A, Characteristic of microstructured optical fibers: an analytical approach, Opt Quant Electron, 44(2012)415-424.
    20.  Sharma D K, Sharma A, On the mode field diameter of microstructured optical fibers Opt Commun, 291(2013)162-168.
    21.  Sharma D K, Sharma A, Splicing of index-guiding microstructured optical fibers and single-mode fibers by controlled air-hole collapse: an analytical

           approach, Opt Quant Electron, 46(2014)409-422.
    22.  Sharma D K, Tripathi S M, Sharma A, Optical characteristics of polymer-infused microstructured optical fiber using an analytical field model, Optik,

           140(2017)1-9.
    23.  Sharma D K, Sharma A, Tripathi S M, Microstructured optical fibers for terahertz waveguiding regime by using an analytical field model, Opt Fib Technol,

           39(2017)55-69.
    24.  Sharma D K, Sharma A, Tripathi S M, Cladding mode coupling in long-period gratings in index-guided microstructured optical fibers, Appl Phys B,

           123(2017)187; doi.org/10.1007/s00340-017-6764-1
    25.  Sharma D K, Sharma A, Tripathi S M, Thermo-optic characteristics of hybrid polymer/silica microstructured optical fiber: An analytical approach, Opt

           Mat, 78(2018)508-520.
    26.  Sharma D K, Tripathi S M, Sharma A, Modal analysis of high-index core tellurite glass microstructured optical fibers in infrared regime, J Non-Cryst Sol,

           511(2019)147-160.
    27.  Sharma D K, Tripathi S M, Optical performance of tellurite glass microstructured optical fiber for slow-light generation assisted by stimulated brillouin

           scattering, Opt Mat, 94(2019)196-205.
    28.  Sharma D K, Tripathi S M, Theoretical analysis for exploring the optical performance of solid-core polymer based microstructured optical fibers, Physica

           B: Cond Mat, 572(2019)279-290.
    29.  Sharma D K, Sharma A, Tripathi S M, Optimum splicing of high-index core microstructured optical fibers and traditional single-mode fibers using

           improved field model, Opt Las Technol, 109(2019)157-167.
    30.  Sharma D K, Sharma A, Improved analytical model for the field of index-guiding microstructured optical fibers, Opt Commun, 366(2016)127-135.
    31.  Bouk A H, Cucinotta A, Poli F, Selleri S, Dispersion properties of square-lattice photonic crystal fibers, Opt Exp, 12(2004)941-946.
    32.  Sharma D K, Sharma A, Tripathi S M, Characteristics of solid-core square-lattice microstructured optical fibers using an analytical field model, Opt Las

           Technol, 96(2017)97-106.
    33.  Ghosh D, Roy S, Bhadra S K, Determination of modal effective indices and dispersion of microstructured fibers with different configurations: a variational

           approach, J Mod Opt, 57(2010)607-620.
    34.  Leon-Saval S G, Argyros A, J. Bland-Hawthorn J, Photonic lanterns: a study of light propagation in multimode to single-mode converters ,Opt Express,

           18(2010)8430- 8439
    35.  Sharma A, Sunder S, URSI Asia-Pacific Radio Sc. Conf. (AP-RASC 2019), New Delhi, March 9-15, 2019.

___________________________________________________________________________________________________________________________________

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 1187-1196


Optical and photoluminescence properties of Ca and Cd doped spin coated nanocrystalline ZnO thin films


Anchal Srivastava

Department of Physics, University of Lucknow, Lucknow-226 007, India

This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

Hexagonal wurtzite nanocrystalline calcium/cadmium doped zinc oxide thin films on glass substrates have been obtained by sol gel spin coating method. Calcium doping enhances, whereas cadmium doping reduces the optical band gap of ZnO thin films. Thus by suitable choice of dopant band gap tuning of ZnO over a considerable range can be obtained. Molarity of the precursor solution plays an important role in achieving   photoluminescence. Ca doping increases defect emission, whereas Cd doping increases UV emission manifold. Cd doped ZnO films are found to possess good photoswitching properties. © Anita Publications. All rights reserved.

Keywords: Doped-ZnO, Calcium, Cadmium, Sol-gel spin coating, Photoluminescence, Photoswitching

References
    1.    Wang Z L, Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing, Appl Phys A, 88 (2007)7-15.
    2.    Ya Z W, Xian Z X, Duan Z, Min G, Shen X S, ZnO nanorods: morphology control, optical properties, and nanodevice applications, Sci China-Phys Mech

           Astron, 56(2013)2243-2265.
    3.    Ali G M, Chakrabarti P, Performance of ZnO-Based Ultraviolet Photodetectors Under Varying Thermal Treatment, IEEE Photonics J, 2(2010)784-793.
    4.    Ali G M, Chakrabarti P, ZnO-based inter-digitated MSM and MISIM ultraviolet photodetectors, J Phys D: Appl Phys, 43(2010)415103; doi.org/10.1088

           /0022-3727/43/41/415103.
    5.    Srivastava A, Kumar N,  Misra K P,  Khare S, Blue-light luminescence enhancement and increased band gap from calcium-doped zinc oxide nanoparticle

           films, Mater Sci Semicond Process, 26(2014)259-266.
    6.    Hwang K.-S, Lee Y.-J, Hwangbo S, Growth, structure and optical properties of amorphous or nano-crystalline ZnO thin films prepared by prefiring-final

           annealing, J Ceram Process Res, 8(2007)305-311.
    7.    Zhang X. -M, Lu M.-Y, Zhang Y, Chen L.-J, Wang Zhong Lin, Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array

           Grown on p-GaN Thin Film, Adv Mater, 21(2009)2767-2770.
    8.    Bie Y.-Q, Liao Z.-M, Wang P-W, Zhou Y-B, Han X-B, Ye Y, Zhao Q, Wu X-S, Dai L, Xu J, Sang L-W, Deng J-J,  Laurent K, Leprince-Wang Y, Yu D-P,

           Adv Mater, 22(2010)4284-4287.
    9.    Vijayalakshmi S, Venkataraj S, Jayavel R, Characterization of cadmium doped zinc oxide (Cd : ZnO) thin films prepared by spray pyrolysis method, J Phys

            D: Appl Phys, 41(2008)245403; doi.org/10.1088/0022-3727/41/24/245403.
    10.  Ahn S-E, Ji H J, Kim K, Kim G T, Bae C H, Park S M, Kim Y-K, Ha J S, Origin of the slow photoresponse in an individual sol-gel synthesized ZnO

           nanowire, Appl Phys Lett, 90 (2007)153106; doi.org/10.1063/1.2721289.
    11.  Dong Ju Seo, Structural and Optical Properties of CdO Films Deposited by Spray Pyrolysis, J Korean Phys Soc, 45(2004)1575-1579.
    12.  Misra P, Sahoo P K, Tripathi P, Kulkarni V N, Nandedkar R V, Kukreja L M, Sequential pulsed laser deposition of CdxZn1−xO alloy thin films for

           engineering ZnO band gap,  Appl Phys A, 78(2004)37-40.
    13.  Shukla R K, Srivastava A, Srivastava A, Dubey K C, Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition,

           J Cryst Growth, 294(2006)427-431.
    14.  Vijayan T A, Chandramohan R, Valanarasu S, Thirumalai J, Subramanian S P, Comparative investigation on nanocrystal structure, optical, and electrical

           properties of ZnO and Sr-doped ZnO thin films using chemical bath deposition method, J Mater Sci, 43(2008)1776-1782.
    15.  Lee G H, Yamamoto Y, Kourogi M, Ohtsu M, Blue shift in room temperature photoluminescence from photo-chemical vapor deposited ZnO films, Thin

           Solid Films, 386(2001)117-120.
    16.  Shan F K, Kim B I, Liu G X, Liu Z F, Sohn J Y, Lee W J, Shin B C, Yu Y S, Blue shift of near band edge emission in Mg doped ZnO thin films and aging,

           J Appl Phys, 95(2004)4772; doi.org/10.1063/1.1690091.
    17.  Misra K P, Shukla R K, Srivastava A, Srivastava A, Blueshift in optical band gap in nanocrystalline Zn1−xCaxO films deposited by sol-gel method, Appl

           Phys Lett, 95(2009)031901; doi.org/10.1063/1.3184789.
    18.  Water W, Wang S F, Chen Y P, Pu J C, Calcium and strontium doped ZnO films for love wave sensor applications, Integr Ferroelectr, 72(2005)13-22.
    19.  Srivastava A, Shukla R K, Misra K P, Photoluminescence from screen printed ZnO based nanocrystalline films, Cryst Res Technol, 46(2011)949-955.
    20.  Liu W, Zhao S, Zhao K, Sun W, Zhou Y, Jin K J, Lu H, He M, Yang G, Ultraviolet photovoltaic characteristics of silver nanocluster doped ZnO thin films,

           Phys B Condensed Matter, 404(2009)1550-1552.
    21.  Teke A, Ozgür U, Dogan S, Gu X, Morkoç H, Nemeth B, Nause J, Everitt H O, Excitonic fine structure and recombination dynamics in single-crystalline

            ZnO, Phys Rev B, 70(2004)195207; doi.org/10.1103/PhysRevB.70.195207.
    22.   Ghosh A, Choudhary R N P, Structural evolution and visible photoluminescence of Zn-ZnO nanophosphor, J Appl Phys, 105(2009)124906;

            doi.org/10.1063/1.3149786.
    23.   Bera A, Basaka D, Carrier relaxation through two-electron process during photoconduction in highly UV sensitive quasi-one-dimensional ZnO nanowires,

            Appl Phys Lett,  93(2008)053102; doi.org/10.1063/1.2968131.
    24.   Li Q H, Gao T, Wang Y G, Wang T H, Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements, Appl Phys

            Lett, 86(2005)123117; doi.org/10.1063/1.1883711.
    25.   Bera A,  Basak D , Effect of Surface Capping with Polyvinylalcohol on the photocarrier relaxation of ZnO nanowires,  ACS Appl Mater Inter,           

            1(2009)2066-2070.
    26.   Shinde S S, Rajpure K Y, Fabrication and performance of N-doped ZnO UV photoconductive detector, J Alloys Compd, 522(2012)118-122.
    27.   Lee J H, Park B O, Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method, Thin Solid Films, 426(2003)94-99.
    28.   Ohyama M, Kozuka H, Yoko T, Sol‐Gel Preparation of Transparent and Conductive Aluminum‐Doped Zinc Oxide Films with Highly Preferential Crystal

            Orientation, J Am Ceram Soc, 81(1998)1622-1632.
    29.   Yamamoto Y, Saito K, Takakashi K, Konagai M, Preparation of boron-doped ZnO thin films by photo-atomic layer deposition, Sol Energy Mater Sol Cells, 

            65(2001)125-132.
    30.   Sanchez-Juarez A, Tiburcio-Silver A, Oritz A, Zironi E P, Rickards J, Electrical and optical properties of fluorine-doped ZnO thin Films prepared by spray

            pyrolysis, Thin Solid Films, 333(1998)196-202.
    31.   Natsume Y, Sakata H, Electrical and optical properties of zinc oxide films post-annealed in H2 after fabrication by sol-gel process, Mater Chem Phys,

            78(2002)170-176.
    32.   Zhan Z, Zhang J, Zheng Q, Pan D, Huang J, Huang F, Lin Z, Strategy for preparing Al-doped ZnO thin film with high mobility and high stability, Cryst

            Growth Des, 11(2011)21-25.
    33.   Mishra D, Srivastava A, Srivastava A, Shukla R K, Bead structured nanocrystalline ZnO thin films: Synthesis and LPG sensing properties, Appl Surf Sci,

            255(2008)2947-2950.
    34.   Das A K, Misra P, Bose A, Joshi S C, Kumar R, Sharma T K, Kukreja L M, Structural, electrical and optical characteristics of Al doped ZnO films grown 

            by sequential pulsed laser deposition, Phys Express, 3(2013)41645-41650.
    35.   Lu J G, Fujita S, Kawaharamura T, Nishinaka H, Kamada Y, Ohshima T, Ye Z Z, Zeng Y J, Zhang Y Z, Zhu L P, He H P, Zhao B H, Carrier concentration

            dependence of band gap shift in n-type ZnO:Al films, J Appl Phys, 101(2007)083705; doi.org/10.1063/1.2721374
    36.   Das A K, Misra P, Kukreja L M, Effect of Si doping on electrical and optical properties of ZnO thin films grown by sequential pulsed laser deposition, J

            Phys D: Appl Phys, 42(2009)165405; doi.org/10.1088/0022-3727/42/16/165405.
    37.   Yadav H K, Gupta V, A comparative study of ultraviolet photoconductivity relaxation in zinc oxide (ZnO) thin films deposited by different techniques, J

            Appl Phys, 111(2012)102809; doi.org/10.1063/1.4714715
    38.   Wu K Y, Wang  C C, Chen D H, Preparation and conductivity enhancement of Al-doped zinc oxide thin films containing trace Ag nanoparticles by the sol–

            gel process, Nanotechnology, 18(2007)305604; doi.org/10.1088/0957-4484/18/30/305604.
    39.   Sandeep C S  Suchand, Phillip R, Satheeshkumar R, Kumar V, Sol-gel synthesis and nonlinear optical transmission in   thin films, Appl Phys Lett,

            89(2006)063102; 10.1063/1.2335375
    40.   Cao L, Jiang J, Zhu L, Realization of band-gap engineering of ZnO thin films via Ca alloying, Mater Lett, 100(2013)201-203.
    41.   Souza F L, Lopes K P, Longo E, Leite E R, The influence of the film thickness of nanostructured a-Fe2O3 on water photooxidation, Phys Chem Chem

            Phys;11(2009)1215-1219.
    42.   Rahal A, Benramache S, Benhaoua B, The effect of the film thickness and doping content of SnO2:F thin films prepared by the ultrasonic spray method, J

            Semicond, 34(2013); 10.1088/1674-4926/34/9/093003
    43.   Tuna O, Selamet Y, Aygun G, Ozyuzer L, High quality ITO thin films grown by dc and RF sputtering without oxygen, J Phys D: Appl Phys,

            43(2010)55402-55407.
    44.   Cheng P, Li D, Yuan Z, Chen P, Yang D, Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film, Appl Phys

            Lett, 92(2008)041119; doi.org/10.1063/1.2839404
    45.   Chen A J, Wu X M, Sha Z D, Zhuge L J, Meng Y D, Structure and photoluminescence properties of Fe-doped ZnO thin films, J Phys D: Appl Phys,

            39(2006)4762-4765.
    46.   Lin B, Fu Z, and Jia Y, Green luminescent center in undoped zinc oxide films deposited on silicon substrates,  Appl Phys Lett, 79(2001)943-945.
    47.   Xu P S, Sun Y M, Shi C S, Xu F Q, Pan H B, The electronic structure and spectral properties of ZnO and its defects, Nucl Instrum Methods Phys Res,

            B199(2003)286-290.
    48.   Dhara S, Giri P K, ZnO/Anthracene based inorganic/organic nanowire heterostructure: photoresponse and photoluminescence studies, J Appl Phys,

            111(2012)044320; doi.org/10.1063/1.3687936.
    49.   Shinde S S, Shinde P S, Oh Y W, Haranath D, Bhosale C H, Rajpure K Y, Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc

            oxide thin films, Appl Surf Sci, 258(2012)9969- 9976.
    50.   Kumar N, Srivastava A,  Faster photoresponse, enhanced photosensitivity and photoluminescence in  nanocrystalline ZnO films suitably doped by Cd, J

           Alloy Compd,706(2017) 438-446.

___________________________________________________________________________________________________________________________________


Asian Journal of Physics                                                                                                   Vol. 28 Nos 10-12, 2019, 1197-1204


Understanding dynamic beam shaping using liquid crystal spatial light modulator based binary holograms


Karuna Sindhu Malik, Nagendra Kumar, Akanshu Chauhan,
Nedup Sherpa and Bosanta R Boruah

Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781 039, Assam, India

This article is dedicated to Prof Kehar Singh for his significant contributions to Optics and Photonics

___________________________________________________________________________________________________________________________________

In this paper, we describe wavefront shaping of a laser beam using a computer generated holography technique. We use liquid crystal spatial light modulator as a dynamic amplitude modulating device to implement binary holograms, which diffract an incident laser beam into a number of orders. The phase profiles of the diffracted beams have direct dependence on the description of the binary hologram, which on the other hand can be controlled in real time via a computer interface. Along with a brief theoretical background we present a proof-of-principle experiment to understand the working of binary hologram based beam shaping mechanism © Anita Publications. All rights reserved.

Keywords: Beam shaping, Liquid crystal spatial modulator, Binary hologram,  Phase profile

References

  1.   Efron U, Spatial light modulator technology: materials, devices, and applications, vol 47, (CRC Press), 1994.

  2.   Amako J, Miura H, Sonehara T, Wave-front control using liquid-crystal devices, Appl Opt, 32(1993)4323-4329.

  3.   Love G D, Wave-front correction and production of zernike modes with a liquid-crystal spatial light modulator, Appl Opt, 36 (1997)1517-1524.

  4.   Ostrovsky A S, Rickenstorff-Parrao C,  Arrizon V, , Generation of the perfect optical vortex using a liquid crystal spatial light modulator, Opt Lett,

        38(2013)534-536.

  5.   Neil M A A, Booth M, Wilson T, Opt Lett, Dynamic wave-front generation for the characterization and testing of optical systems, Opt Lett,

        23(1998)849-1851.

  6.   Neil M, Wilson T, Juskaitis R, A wavefront generator for complex pupil function synthesis and point spread function engineering, J Microsc,

        197(2000)219-223.

  7.   Boruah B R, Dynamic manipulation of a laser beam using a liquid crystal spatial light modulator, Am J Phys, 77(2009)331-336.

  8.   Dudley A, Majola N, Chetty N, Forbes A, Implementing digital holograms to create and measure complex-plane optical fields, Am J Phys, 84(2016)106-112.

  9.   Gossman D, Perez-Garcia B, Hernandez-Aranda R I, Forbes A, Optical interference with digital holograms, Am J Phys, 84(2016)508-516.

10.   Forbes A, Dudley A, McLaren M, Creation and detection of optical modes with spatial light modulators, Adv Opt Photonics, 8(2016)200-227.

11.   Cofre A, Garcia-Martinez P, Vargas A, Moreno I, Vortex beam generation and other advanced optics experiments reproduced with a twisted-nematic liquid-

        crystal display with limited phase modulation, Eur J Phys, 38(2017)014005; doi.org/10.1088/1361-6404/38/1/014005.

12.   Tsai T.-H, Yuan X, Brady D J, Spatial light modulator based color polarization imaging, Opt express, 23(2015)11912 -11926.

13.   Guo K, Bian Z, Dong S, Nanda P, Wang Y M, Zheng G, Microscopy illumination engineering using a low-cost liquid crystal display, Biomed Opt express,

        6(2015)574-579.   

14.   Bhebhe N, Williams P A, Rosales-Guzman C, Rodriguez-Fajardo V, Forbes A, A vector holographic optical trap, Sci Rep, 8(2018)17387; doi:

        10.1038/s41598-018-35889-0.

15.   Gupta D K, Tata B, Ravindran T, Optimization of a spatial light modulator driven by digital video interface graphics to generate holographic optical traps,

        Appl Opt, 57(2018)8374-8384.

16.   Li S, Ding L, Du P, Lu Z, Wang Y, Zhou L, Yan X, Using the spatial light modulator as a binary optical element: application to spatial beam shaping for high-

        power lasers, Appl Opt, 57(2018)7060-7064.

17.   Parry J P, Beck R J, Shephard J D, Hand D P, Application of a liquid crystal spatial light modulator to laser marking, Appl Opt, 50(2011)1779-1785.

18.   Goodman J W, Introduction to Fourier optics, (Roberts and Company Publishers), 2005.

19.   Noll R J, Zernike polynomials and atmospheric turbulence, J Opt Soc Am, 66(1976)207-211.

© ANITA PUBLICATIONS

All rights reserved

Designed & Maintained by

Manoj Kumar