ap
An International Peer Reviewed Research Journal
AJP
SSN : 0971 - 3093
Vol 26, No 1, January, 2017
Guest Editorial
Recent advances in trap based precision measurement and application
It gives me immense pleasure to introduce this special issue of the Asian Journal of Physics on “Recent advances in trap based precision measurement and application”. The advancement of ion trap physics is a continuous process and always there is something new happening. However, it is appropriate to periodically update the progress made over certain period of time. Therefore, when I was requested by the editor-in-chief Dr. Vinod Rastogi to compile a special topical edition of AJP, I was convinced that it should be on the progress made in terms of precision measurements using trapped ions over half a decade.
Traditionally ion trap has been the forerunner in wide range of physics applications: mass spectrometry, atomic spectroscopy, nuclear decay studies, quantum information processing, and quantum computation to name a few. In more recent times ion trap based single atom clock is becoming a strong contender to replace atomic fountain based atomic clocks. Similarly, quantum simulators are becoming reality raising hopes of achieving what Richard Feynman had long dreamt of and what Erwin Schrodinger thought it to be impossible. The simulators at present can perform basic simulation with only a few ions thereby only addressing problems which are toy models. However, with the theoretical scope of investigating vast range of interesting condensed matter as well as field theoretic problems, the challenges before experiment is getting more exciting. An experiment on ion trap based precision spectroscopy has recently probed the Lorentz invariance symmetry with unprecedented accuracy. However, probing the Standard Model of particle physics or looking beyond it has so far been restricted to atomic beam experiments which are dodged by the systematics related to field inhomogeneity in the experimental volume. Ion trap promises to surpass the precision of these experiments and in recent times made considerable progress in that direction. The other major aspect in which the field is expanding and becoming multi-disciplinary is the field of ion trap development to achieve scalability. This requires strong collaboration between ion trap groups and material science groups which are already bearing some fruits in terms of new trap design which are robust against ion shuttling. Needless to say these are only a few aspects in which tremendous progress has been made over the last five years. A vast majority of the progress has not been discussed here due to constrain and hence it only provides glimpse of the whole picture.
Fortunately, we could cover a wide range of topics from ion clocks to discreet symmetry probes, all using trapped ion. However, it is a minuscule of the actual advancement made over the last five years. It took a while than expected to finally publish this issue, nevertheless, tireless effort from a small editorial team has done an excellent job in getting the issue organized. I would like to thank all the authors who have contributed to this special issue and have shown immense patience. Most importantly I am personally thankful to the editorial team for their hard work behind the scene. I apologize for the delay in getting this special issue published but do hope that it will provide a wider insight in the ion trap physics in the domain of precision spectroscopy.
Manas Mukherjee
Asian
Journal of
Physics
Vol. 26
No 1, 2017, 01-07
Spectroscopy of 176Lu+
Samuel Wang, Rattakorn Kaewuam, Arpan Roy, K J Arnold, and M D Barrett
Centre for Quantum Technologies and Department of Physics
National University of Singapore, 3 Science Drive 2, 117543 Singapore
___________________________________________________________________________________________________________________________________
We report spectroscopy of the low-lying 5d6s 3D1, 5d6s 3D2, and 6s6p 3P1 levels of 176Lu+ relative to the 6s21S0 ground state. The hyperfine structure for each level, the allowed electric dipole transitions, and clock transitions between the S and D states are all determined to the ~MHz level of accuracy. These measurements provide a useful starting point for establishing optical clock operation with this isotope. © Anita Publications. All rights reserved.
Total Refs: 10
1. Barrett M D, Developing a field independent
frequency reference, New J Phys, 17(2015)053024;
doi.org/10.1088/1367-2630/17/5/053024
2. Arnold Kyle, Hajiyev Elnur,
Paez Eduardo, Lee Chern Hui, Barrett M D, Bollinger John, Prospects
for atomic clocks based on large ion crystals, Phys Rev A,
92(2015)032108; doi.org/10.1103/PhysRevA.92.032108
3. Kozlov A, Dzuba V, Flambaum
V V, Optical atomic clocks with suppressed blackbody-radiation
shift, Phys Rev A, 90(2014)042505;
doi.org/10.1103/PhysRevA.90.042505
4. Paez Eduardo, Arnold K J,
Hajiyev Elnur, Porsev S G, Dzuba V A, Safronova U I, Safronova M S,
Barrett M D, Atomic properties of Lu+, Phys Rev A, 93(2016)042112;
doi.org/10.1103/PhysRevA.93.042112
5. Arnold K J, Kaewuam R, Roy
A, Paez E, Wang S, Barrett M D, Observation of the 1S0 to 3D1 clock
transition in 175Lu+, Phys Rev A, 94(2016)052512;
doi:10.1103/PhysRevA.94.052512
6. Schuler Von H, Gollow H,
Uber das mechanische und magnetische Moment und uber das
Quadrupolmoment des seltenen 176Cp-Kernes, Zeitschrift fur Physik,
113(1939)1-9,
7. Schuler Von H, Schmidt Th,
Uber die Abweichung des Cassiopeiumatomkerns von der
Kugelsymmetrie, Zeitschrift fur Physik, 95(1935)265-272.
8. Georg U, Borchers W, Keim
M, Klein A, Lievens P, Neugart R, Neuroth M, Rao Pushpa M, Schulz
C, and the ISOLDE Collaboration, Laser spectroscopy investigation
of the nuclear moments and radii of lutetium isotopes, Euro Phys J:
A, 3(1998)225-235.
9. Blaise Jean, Bauche
Jacques, Gerstenkorn Simon, Tomkins Frank S, Determination
spectroscopique du spin de 176Lu et des moments nucleaires
magntique et quadrupolaire de 175Lu et 176Lu, J Phys Radium,
22(1961)417-427,
10. Beloy K, Derevianko A,
Johnson W R, Hyperfine structure of the metastable 3P2 state of
alkaline-earth-metal atoms as an accurate probe of nuclear magnetic
octupole moments, Phys Rev A, 77(2008)012512;
doi:10.1103/PhysRevA.77.012512
___________________________________________________________________________________________________________________
Asian Journal of Physics Vol 26, No 1, 2017, 09-19
A measurement of the strongly forbidden 6S1/2 ↔ 5D3/2 magnetic dipole transition dipole transition moment in Ba+
Spencer R Williams, Anupriya Jayakumar, Mathew R Hoffmann, Boris B Blinov and E N Fortson
Department of Physics, University of Washington, Seattle, Washington, 98195, USA
___________________________________________________________________________________________________________________________________
We report the results from our first-generation experiment to measure the magnetic-dipole transition moment (M1) between the 6S1/2 and 5D3/2 manifolds in Ba+. Knowledge of M1 is crucial for the proposed parity-nonconservation experiment in the ion [1], where M1 will be a leading source of systematic error. To date, no measurement of M1 has been made in Ba+, and moreover, the sensitivity of the moment to electron-electron correlations has confounded accurate theoretical predictions. A precise measurement may help to resolve the theoretical discrepancies while providing essential information for planning a future PNC measurement in Ba+. We demonstrate our technique for measuring M1 - including a method for calibrating for stress-induced birefringence introduced by the scientific apparatus - and report our first measurement yielding M1 = 93 + 38 – 40 × 10–5μB. © Anita Publications. All rights reserved.
Keywords: Barium, Spectroscopy, Forbidden transitions, Parity Non-Conservation
Total
Refs: 26
1.
Fortson Norval, Possibility of measuring parity nonconservation
with a single trapped atomic ion, Phys Rev Lett, 70(1983)2383; doi:
10.1103/PhysRevLett.70.2383.
2. Marciano William J, Rosner Jonathan L. Atomic
parity violation as a probe of new physics, Phys Rev Lett,
65(1990)2963-2966; doi:10.1103/PhysRevLett.65.2963.
3. Fortson E N, Pang Y, Wilets L,
Nuclear-structure effects in atomic parity nonconservation, Phys
Rev Lett, 65(1990)2857-2860; doi: 10.1103/Phys. Rev. Lett.
65.2857.
4. Pollock S J, Fortson E N, Wilets L, Atomic
parity nonconservation: Electroweak parameters and nuclear
structure, Phys Rev C, 46(1992)2587-2600;
doi:10.1103/PhysRevC.46.2587.
5. Flambaum V V, Khriplovich I B, Sushkov O P,
Nuclear anapole moments, Phys Lett B, 146(1984)367-369; doi:
doi.org/10.1016/0370-2693(84)90140-0.
6. Gwinner G, Gomez E, Orozco L A, Gaivan A
Perez, Sheng D, Zhao Y, Sprouse G D, Behr J A, Jackson K P,
Pearson M R, Aubin S, Flambaum V V, TCP 2006: Proceedings of the
4th International Conference on Trapped Charged Particles and
Fundamental Physics (TCP 2006) held in Parksville, Canada, 3-8
September, 2006, Chapter Fundamental symmetries studies with cold
trapped francium atoms at ISAC, pp 45-51. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007. ISBN 978- 3-540-73466-6;
doi:10.1007/978-3-540-73466-6_7.
7. DeMille D, Cahn S B, Murphree D, Rahmlow D A,
Kozlov M G, Using molecules to measure nuclear spin-dependent
parity violation, Phys Rev Lett, 100(2008)023003; doi:
10.1103/PhysRevLett.100.023003.
8. Tsigutkin K, Dounas-Frazer D, Family A,
Stalnaker J E, Yashchuk V V, Budker D, Parity violation in atomic
ytterbium: Experimental sensitivity and systematics, Phys Rev A,
81(2010)032114; doi: 10.1103/PhysRevA.81.032114.
9. Williams Spencer R, Jayakumar Anupriya, Homan
Matthew R, Blinov Boris B, Fortson E N, Method for measuring
the 6S1/2↔ 5D3/2 magnetic-dipole-transition moment in Ba+, Phys Rev
A, 88(2013)012515 ; doi: 10.1103/PhysRevA.88.012515.
10. Roberts B M, Stadnik Y V, Dzuba V A, Flambaum
V V, Leefer N, Budker D, Parity-violating interactions of cosmic
fields with atoms, molecules, and nuclei: Concepts and calculations
for laboratory searches and extracting limits, Phys Rev D,
90(2014)096005; doi:10.1103/PhysRevD.90.096005.
11. Choi J, Elliott D S, Measurement scheme and
analysis for weak ground-state-hyperne-transition moments through
two-pathway coherent control, Phys Rev A, 93(2016)023432;
doi:10.1103/ PhysRev A.93.023432.
12. Sahoo B K, Islam Md R, Das B P, Chaudhuri
R K, Mukherjee D, Lifetimes of the metastable 2d3/2;5/2
states in Ca+, Sr+, and Ba+, Phys Rev A, 74(2006)062504;
doi:10.1103/PhysRevA.74.062504.
13. Yu N, Nagourney W, Dehmelt H, Radiative
lifetime measurement of the Ba+ metastable d3/2 state, Phys Rev
Lett, 78(1997)4898-4901; doi: 10.1103/PhysRevLett.78.4898.
14. Gossel G H, Dzuba V A, Flambaum V V.
Calculation of strongly forbidden M1 transitions and g-factor
anomalies in atoms considered for parity-nonconservation
measurements, Phys Rev A, 88(2013)034501; doi: 10.1103/Phys.
Rev.A.88.034501.
15. Safronova M S. Private communication,
2014.
16. Steele A V, Churchill L R, Grin P F, Chapman
M S. Photoionization and photoelectric loading of barium ion traps.
Phys Rev A, 75(2007)053404; doi:10.1103/PhysRevA.75.053404.
17. Nagourney Warren, Sandberg Jon, Dehmelt Hans,
Shelved optical electron amplifier: Observation of quantum jumps,
Phys Rev Lett, 56(1986)2797-2799; doi:10.1103/Phys. Rev.
Lett.56.2797.
18. Kleczewski A, Homan M R, Magnuson E, Blinov B
B, Fortson E N, Frequency doubling and stabilization of a Tm,Ho:YLF
laser at 2051 nm to a high finesse optical cavity. 2011. URL
http://arxiv.org/abs/1105.4400.
19. Notcutt Mark, Ma Long-Sheng, Ye Jun, Hall
John L, Simple and compact 1-Hz laser system via an improved
mounting configuration of a reference cavity, Opt Lett,
30(2005)1815-1817; doi:10.1364/OL.30.001815.
20. Kleczewski Adam. Towards a measurement of the
nuclear magnetic octupole moment in barium-137, Ph D Thesis,
University of Washington, 2011.
21. Grischkowsky D, Coherent excitation,
incoherent excitation, and adiabatic states, Phys Rev A,
14(1976)802-812; doi:10.1103/PhysRevA.14.802.
22. Noel T, Dietrich M R, Kurz N, Shu G, Wright
J, Blinov B B, Adiabatic passage in the presence of noise, Phys Rev
A, 85(2012)023401; doi: 10.1103/PhysRevA.85.023401.
23. Brakhane Stefan, Alt Wolfgang, Meschede
Dieter, Robens Carsten, Moon Geol, Alberti Andrea, Note: Ultra-low
birefringence dodecagonal vacuum glass cell, Rev Sci Inst,
86(2015)126108; doi: org/10.1063/1.4938281.
24. Solmeyer Neal, Zhu Kunyan, Weiss David S,
Note: Mounting ultra-high vacuum windows with low stress-induced
birefringence, Rev Sci Inst, 82(2011)066105; doi:
org/10.1063/1.3606437.
25. Steffen Andreas, Alt Wolfgang, Genske
Maximilian, Meschede Dieter, Robens Carsten, AlbertiAndrea, Note:
In situ measurement of vacuum window birefringence by atomic
spectroscopy, Rev Sci Inst, 84(2013)126103;
doi:org/10.1063/1.4847075.
26. Williams Spencer, New Techniques and First
Results Toward Measuring the 6S1/2 to 5D3/2 Magnetic-Dipole
Transition Moment in Ba+. Ph D thesis, University of Washington,
2015.
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 26
No 1, 2017, 21-26
Quantum engine cycles and shape of the trap
Dario Poletti
Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore and
MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore
___________________________________________________________________________________________________________________________________
We review
some critical aspects related to the shape of traps confining a
gaseous working fluid and its consequences on the performance of
quantum engines cycles. We show that when the gas trapping
potential has a particular shape, the state of the gas can remain
thermal after a quantum adiabatic transformation. We then discuss
the comparison of engine cycles for gases confined in traps of
different geometrical forms. We conclude by analyzing the interplay
between the quantum statistics of the particles constituting the
working fluid and the shape of the trap. © Anita
Publications. All rights reserved.
Keywords:
Quantum thermodynamics, Ion traps
Total Refs : 32
1. Carnot S, Reflexions sur la puissance
motrice du feu ´ (Bachelier, Paris), 1824.
2. Scovil H E D, Schulz-DuBois
E O, Phys Rev Lett, 2(1959)262;
doi:org/10.1103/PhysRevLett.2.262
3. Youssef M, Mahler G, Obada
A.-S. F, Phys Rev E, 80(2009)061129;doi:
org/10.1103/PhysRevE.80.061129
4. Linden N, Popescu S,
Skrzypczyk P, Phys Rev Lett, 105(2010)130401;
doi.org/10.1103/PhysRevLett.105.130401
5. Skrzypczyk P, Brunner N,
Linden N, Popescu S, J Phys A, 44 (2011)492002;
/doi.org/10.1088/1751-8113/44/49/492002
6. Teo C, Bissbort U, Poletti
D , arxiv:1609.02294
7. Roulet A, Nimmrichter S,
Arrazola J M, Scarani V, arxiv:1609.06011
8. Giazotto F, Heikkila T T,
Luukanen A, Savin A M, Pekola J P, Rev Mod Phys, 78(2006)217;
doi.org/10.1103/RevModPhys.78.217
9. Shakouri A, Annu Rev Mater
Res, 41(2011)399-431;
doi:10.1146/annurev-matsci-062910-100445
10. Dubi Y, Ventra M
Di, Rev Mod Phys, 83(2011)131;
doi.org/10.1103/RevModPhys.83.131
11. Sothmann B, Sanchez R,
Jordan A N, Nanotechnology, 26(2015)032001;
doi.org/10.1088/0957-4484/26/3/032001
12. Benenti G, Casati G,
Meja-Monasterio C, Peyrard M, From thermal rectifiers to
thermoelectric devices, in Thermal transport in low dimensions, S
Lepri (Ed), Lecture Notes in Physics 921 (Springer, 2016).
13. Muhonen J T, Meschke M,
Pekola J P, Rep Prog Phys,
75(2012)046501;doi:org/10.1088/0034-4885/75/4/046501
14. Seifert U, Rep Prog Phys,
75(2012)126001; doi:org/10.1088/0034-4885/75/12/126001
15. Koslo R, Entropy,
15(2013)2100-2128; doi:10.3390/e15062100.
16. Gelbwaser-Klimovsky D,
Niedenzu W, Kurizki G, Adv At Mol Opt Phys, 64(2015)329-407;
doi:org/10.1016/bs.aamop.2015.07.002
17. Vinjanampathy S, Anders J,
Contemporary Physics, 57(2016)1-35;
doi:org/10.1080/00107514.2016.1201896
18. Benenti G, Casati G, Saito
K, Whitney R S, arXiv:1608.05595 [cond-mat.mes-hall].
19. Talkner P, Lutz E, Hnggi
P, Phys Rev E, 75(2007)050102(R);
doi:org/10.1103/PhysRevE.75.050102
20. Campisi M, Hnggi P,
Talkner P, Rev Mod Phys, 83(2011)771-791;
doi:org/10.1103/RevModPhys.83.771
21. Campisi M, Hnggi P,
Talkner P, Rev Mod Phys, 83 (2011)1653;
doi:org/10.1103/RevModPhys.83.1653
22. Deffner S, Jarzynski C,
Campo Adolfo del, Phys Rev X, 4(2014)021013; doi:
org/10.1103/PhysRevX.4.021013
23. Zheng Y, Campbell S,
Chiara G De, Poletti D, Phys Rev A, 94(2016)042132;
doi:org/10.1103/PhysRevA.94.042132
24. Xiao G, Gong J, Phys Rev
E, 92(2015)012118; doi: org/10.1103/PhysRevE.92.012118
25. Zheng Y, Poletti D, Phys
Rev E, 90(2014)012145; doi: org/10.1103/PhysRevE.90.012145
26. Zheng Y, Poletti D, Phys
Rev E, 92(2015)012110; doi : org/10.1103/PhysRevE.92.012110
27. Zheng Y, Hnggi P, Poletti
D, Phys Rev E, 94(2016)012137; doi:
org/10.1103/PhysRevE.94.012137
28. Jaramillo J, Beau M, Campo
A del, New J Phys, 18(2016)075019;
doi:org/10.1088/1367-2630/18/7/075019
29. Leibfried D, Blatt R,
Monroe C, Wineland D, Rev Mod Phys, 75 (2003)281;
doi:org/10.1103/RevModPhys.75.281
30. Cirac J I, Blatt R, Zoller
P, Phillips W D, Phys Rev A, 46(1992)2668;
doi:org/10.1103/PhysRevA.46.2668
31. An S, Zhang J N, Um M, Lv
D, Lu Y, Zhang J, Yin Z Q, Quan H T, Kim K, Nature Physics ,
11(2015)193;
http://www.nature.com/nphys/journal/v11/n2/abs/nphys3197.html
32. Roβnagel J, Dawkins S T,
Tolazzi K N, Abah O, Lutz E, Schmidt-Kaler F, Singer K, Science,
352(2016)325-329; doi:
10.1126/science.aad6320
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol 26, No 1, 2017, 27-32
Magnetic field calibration using a single barium ion
S Das1, D De Munshi1, N V Horne1, P Liu1, M Mukherjee1, 2, 3, and D Yum1, 2
1Centre for Quantum Technologies, National University Singapore, Singapore 117543
2Department of Physics, National University Singapore, Singapore 117551
3MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore
____________________________________________________________________________________________________________________________________
A single atom as a probe to an external field can provide both high resolution as well as precision. In this article the use of a single trapped and laser cooled ion as a probe of magnetic field magnitude as well as direction is discussed. We show that the highest precision can be obtained by Zeeman shift measurements involving dipole forbidden transition, however zero field calibration can be done with moderate precision involving fast dipole transitions. © Anita Publications. All rights reserved.
Keywords: Laser cooled ion, Zeeman shift, Dipole transitions.
Total
Refs: 21
1. Dutta T, Munshi D De, Yum D, Rebhi R,
Mukherjee M, Sci Rep, 6(2016)29772; doi:10.1038/srep29772
2. Cirac J I, Zoller P, Phys
Rev Lett, 74(1995)4091; doi:org/10.1103/PhysRevLett.74.4091
3. Blatt R, Roos C F,
Nature Phys, 8 (2012)277-284; doi:10.1038/nphys2252
4. Buluta I, Nori F, Science,
326(2009)108-111;doi: 10.1126/science.1177838
5. Chou C W, Hume D B, Koelemeij J
C J, Wineland D J, Rosenband T, Phys Rev Lett, 104(2010)070802;
doi: org/10.1103/PhysRevLett.104.070802
6. Kielpinski D, Monroe C,
Wineland D J, Nature, 417(2002)709-711;
doi:10.1038/nature00784
7. Maiwald R, Leibfried D,
Britton J, Bergquist J C, Leuchs G, Wineland D J, Nat Phys,
5(2009)551-554; doi:10.1038/nphys1311
8. Ivanov P A, Nikolay V V,
Kilian S, Sci Rep, 6(2016)28078; doi: 10.1038/srep28078
(2016).
9. Munshi D De, Mukherjee M,
Roy B Dutta, Phys Lett A, 377 (2013)228;
doi:org/10.1016/j.physleta.2012.11.033
10. Smith A, Anderson B E,
Chaudhury S, Jessen P S, J Phys B : At Mol Opt Phys,
44(2011)205002;doi: org/10.1088/0953-4075/44/20/205002
11. Millo J, Magalhães D V, Mandache
C, Coq Y Le, English E M L, Westergaard P G, Lodewyck J, Bize S,
Lemonde P, Santarelli G, Phys Rev A, 79(2009)053829; doi:
org/10.1103/PhysRevA.79.053829
12. Leibrandt D R, Thorpe
Michael J, Notcutt Mark, Drullinger Robert E, Rosenband Till,
Bergquist James C, Opt Express, 19(2011)3471-3482; doi:
org/10.1364/OE.19.003471
13. Yum D, Munshi D De, Dutta
T, Mukherjee M, arxiv.org: 1611.10016 (2016).
14. Webster S A, Oxborrow M,
Gill P, Phys Rev A, 75(2007)011801(R); doi:
org/10.1103/PhysRevA.75.011801
15. Fleischhauer M, Imamoglu
A, Marangos J P, Rev Mod Phys, 77(2005)633; doi:
org/10.1103/RevModPhys.77.633
16. Barkeland D J,
Boshier M G, Phys Rev A, 65(2002)033413; doi:
org/10.1103/PhysRevA.65.033413
17. Das S, Application of
precision measurement with trapped ion and development of a
planar surface ion trap setup, Ph D Thesis, Submitted to
National University of Singapore, (2017).
18. Raab C, Bolle J, Oberst H,
Eschner J, Schmidt-Kaler F, Blatt R, Appl Phys B, 67(1998)683-688;
doi: doi:10.1007/s003400050566
19. Dutta T, Munshi D D,
Mukherjee M, J Opt Soc. Am B, 33(2016)1177-1181; doi:
org/10.1364/JOSAB.33.001177
20. Munshi D De, Precision
measurements to explore underlying geometries and interactions in a
trapped Ba+ ion, Ph D Thesis, National University of Singapore,
(2017).
21. Dutta T, Precision
measurement to study strongly correlated systems-from a single ion
to phonons in an ion chain; Ph D Thesis, National University
of Singpore, (2016).
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol 26, No 1, 2017, 35-57
Surface ion trap for barium ion - the industrial way
S Das1, Y Ren2 and M Mukherjee1,2,3
1Centre for Quantum Technologies, National University Singapore, Singapore 117543
2Department of Physics, National University Singapore, Singapore 117551
3MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore
___________________________________________________________________________________________________________________________________
Ion trap is the fore-runner in the field of quantum information, communication and computation. Therefore, miniaturization and integration of these devices forms an important field of research towards making this technology scalable. The most scalable architecture of an ion trap processor is a surface trap design. Technologically, there exists well developed commercial techniques for micro-fabrication. However, the goal of this article is to explore to what extent these commercial approaches can be directly implemented in developing planar surface ion traps.© Anita Publications. All rights reserved.
Keywords: Ion trap, Quantum information, Cryogenic cooling
Total Refs: 30
1. Cirac J I, Zoller P, Phys Rev Lett,
74(1995)4091; doi.org/10.1103/PhysRevLett.74.4091
2. Leibfried D, Blatt R,
Monroe C, Wineland D, Rev Mod Phys,75(2003)281;
doi:org/10.1103/RevModPhys.75.281
3. Hffner H, Roos C, Blatt R,
Phys Rep, 469(2008)155-203; doi:
org/10.1016/j.physrep.2008.09.003
4. Moehring D, Maunz P,
Olmschenk S, Younge K C, Matsukevich D N, Duan L.-M, Monroe C,
Nature, 449(2007)68-71; doi: 10.1038/nature06118
5. Chiaverini J, Blakestad R
B, Britton J, Jost J D, Langer C, Leibfried D, Ozeri R, Wineland D
J, Qunatum Inf Comput, 5(2005)419; arXiv:quant-ph/0501147
6. Seidelin S, Chiaverini J,
Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H,
Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer
C, Ozeri R, Shiga N, Wineland D J, Phys Rev Lett, 96(2006)253003;
doi: org/10.1103/PhysRevLett.96.253003
7. Szymanski B, Dubessy R,
Dubost B, Guibal S, Likforman J.-P, Guidoni L, Appl Phys Lett,
100(2012)10.1063doi: http://dx.doi.org/10.1063/1.4705153.
8. Kielpinski D, Monroe C,
Wineland D J, Nature, 417(2002)709-711; doi:
10.1038/nature00784
9. Wineland D J, Monroe C,
Itano W M, Leibfried D, King B E, Meekhof D M, J Res Natl Inst
Stand Technol,103 (1998)259-328;doi:
10.6028/jres.103.019
10. Hite D A, Colombe Y, Wilson A C, Brown K R,
Warring U, Jördens R, Jost J D, McKay K S, Pappas D P, Leibfried D,
Wineland D J, Phys Rev Lett, 109(2012)103001; doi:
org/10.1103/PhysRevLett.109.103001
11. Turchette Q A, Kielpinski, King B E,
Leibfried D, Meekhof D M, Myatt C J, Rowe M A, Sackett C A, Wood C
S, Itano W M, Monroe C, Wineland D J, Phys Rev A, 61(2000)063418;
doi: org/10.1103/PhysRevA.61.063418
12. DeVoe R, Kurtsiefer C, Phys Rev A,
65(2002)063407; doi:org/10.1103/PhysRevA.65.063407.
13. Labaziewicz J, Ge Y, Antohi P,
Leibrandt D, Brown K R, Chuang I L, Phys Rev Lett, 100(2008)013001;
doi: org/10.1103/PhysRevLett.100.013001
14. Clark R J, Lin Z, Diab K S, Chuang I
L, J Appl Phys, 109(2011)076103;
doi:org/10.1063/1.3565053
15.
Nigg D, Mller M, Martinez E A, Schindler P, Hennrich M, Monz
T, Martin-Delgado M A, Blatt R, Science, 345 (2014)302-305;doi:
10.1126/science.1253742
16. House M G, Phys Rev A, 78(2008)033402;
doi: org/10.1103/PhysRevA.78.033402
17. Tanaka U, Masuda K, Akimoto Y, Koda K,
Ibaraki Y, Urabe S, Appl Phys B, 107(2012)907-912; doi:
10.1007/s00340-011-4762-2
18. Oliveira M H, Miranda J A, Eur J Phys,
22(2001)31-38; doi: org/10.1088/0143-0807/22/1/304
19. Ozakin A, Shaikh F, Stability analysis
of surface ion traps, e-print,http://arxiv.org/abs/1109.2160v1.
18
20. Banerjee P K, Buttereld R, Developments in
Soil Mechanics and Foundation Engineering: v.1, Vol 1, (McGraw-Hill
Book Company Limited, London, England), 1981.
21. Singer K, Poschinger U, Murphy M,
Ivanov P, Ziesel F, Calarco T, Schmidt-Kaler F, Rev Mod Phys, 82
(2010)2609; doi: org/10.1103/RevModPhys.82.2609
22. Ghose P K, Ion Traps,
(Clarendon, Oxford Press), 1995.
23. Jackson J D, Classical
Electrodynamics, (Wiley Hoboken, 3rd edn), 1999.
24. Siverns J D, Simkins L R, Weidt
S, Hensinger W K, Appl Phys B, 107(2012)921;
doi:10.1007/s00340-011-4837-0
25. Munshi Debasish De, Precision
Measurements to Explore Underlying Geometries and Interactions in a
Trapped Ba+ Ion, Ph D thesis, National University of Singapore,
(2017).
26. Drever R W P, Hall J L,
Kowalski F V, Hough J, Ford G M, Munley A J, Ward H, Appl
Phys B, 31(1983)97; doi: 10.1007/BF00702605.
27. Dutta T, Munshi D De,
Mukherjee M, J Opt Soc Am B, 33(2016)1177-1181; doi:
org/10.1364/JOSAB.33.001177
28. Awad A M, Ghany N A Abdel,
Dahy T M, Appl Surface Sci, 256(2010)4370-4375; doi:
org/10.1016/j.apsusc.2010.02.033
29. Fowler R H,Nordheim L,
Proc Royal Soc London, 119(1928)173-181.
30. Daniilidis N, Narayanan S,
Moller S A, Clark R, Lee T E, Leek P J, Wallraff A, Schulz St,
Schmidt-Kaler F, H Haffner H, New J Phys, 13(2012)079504;
doi.org/10.1088/1367-2630/13/1/013032
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol 26, No 1, 2017, 59-68
Study of spatial distribution of large
ion clouds and the influence of geometrical
perturbations
in order to efficiently trap short lived radioactive nuclei in a Paul trap
Pushpa M Rao
Atomic and Molecular Physics Division
Bhabha Atomic Research Centre, Mumbai 400 085, India
___________________________________________________________________________________________________________________________________
Ions can be confined within the stability region over a wide range of applied potentials as here they would exhibit stable trajectories. But in the case of a large number of trapped ions, several types of interactions and perturbations play a vital role, leading to shift in the stability region and also a change in the ion oscillation frequencies. A review of the detailed study of the dynamics and behavior of large ion clouds and the effect of geometrical perturbations leading to a non-ideal trap is presented. These studies are a prerequisite to, efficient trapping and detection of relatively short lived radioactive 146Eu generated at the accelerator site which is also reviewed in this paper. Studies of the mass dependent ion oscillation frequencies show that the ions trapped have a mass number 146 amu and this was confirmed by similar measurements carried out on trapped barium and potassium ions. A review of the studies of spatial density distributions of large ion cloud is also presented. These studies help in obtaining the most suitable trapping potential so that the maximum path length for Laser- ion cloud interaction is achieved thereby increasing the detection sensitivity enormously. © Anita Publications. All rights reserved..
Keywords: Ion Trap, Ion Cloud, Ion Oscillation frequency
Total Refs: 26
1. Werth G, Hyperfine Interact,
172(2006)125; doi:10.1007/s10751-007-9531-6
2. Wineland D J,
Bergquist J C, Itano W M, Drullinger R E, Opt Lett, 5 (1980) 245;
doi.org/10.1364/OL.5.000245
3. Knight R D, Prior M
H, J Appl Phys, 50(1979)3044-3049
4. Schaaf H, Schmeling
U, Werth G, Appl Phys, 25(1981)249-251
5. Brown L S, Gabrielse
G, Rev Mod Phys, 58(1986)233; doi: 10.1103/RevModPhys.58.233
6. Joshi Manoj Kumar,
Satyajit K T, Rao Pushpa M, Nucl Instrum Methods Phys Res A,
800(2015)111-118
7. Franzen J, Int J Mass
Spectrom Ion Process, 106(1991)63-78
8. Joshi Manoj Kumar,
Rao Pushpa M, Int J Mass Spectrom, 328-329(2012)36-42
9. Bollen G, Traps for
Rare Isotopes, Lect Notes Phys, 651(2004)169-210.
10. Stolzenberg H, Becker St, Bollen G. Kern F,
Kluge H.-J, Otto T, Savard G, Schweikhard L, Audi G, Moore R B,
Phys Rev Lett, 65(1990)3104; doi: 10.1103/PhysRevLett.65.3104
11. Bergstrom I, Borgenstrand H, Carlberg C,
Rouleau G, Smith B, Schuch R, Bollen G, Jertz R, Kluge H.-J,
Schark E and Schwarz T, Phys Scrip, 47(1993)475;
doi:10.1088/0031-8949/47/3/018
12. (a) Bollen G, Traps for Rare
Isotopes, Lect Notes Phys. 651(2004)169-210.
(b)
Mukherjee M, Beck D, Blaum K, Bollen G, Dilling J, George S,
Herfurth F, Herlert A, Kellerbauer A, Kluge H.-J, Schwarz S,
Schweikhard L, Yazidjian C, Eur Phys J: A, 35(2008)1-29.
13. Enders K, Stachowska E, Marx G, Ch
Zölch, Georg U, Dembczynski J, Werth G, (ISOLDE Collaboration),
Phys Rev A, 56(1997)265; doi.org/10.1103/PhysRevA.56.265
14. JoshiM K, Sikdar A K, Rao Pushpa
M, Bhattacharjee T, Das S K, Das P, Phys Scr, 89(2014)085404
(7pp); doi.org/10.1088/0031-8949/89/8/085404
15. Nayak D, Lahiri S, Ramaswami A,
Manohar S B, Das NR. Appl Radiat Isot, 51(1999)631-636.
16. Major F. G, Gheorghe, Viorica N.
Werth Günther Charged Particle Traps Physics and Techniques of
Charged Particle Field Confinement, Springer Seires, (2005).
17. Dehmelt H G, Adv At Mol
Phys, 3(1967)53; doi.org/10.1016/S0065-2199(08)60170-0
18. March R E, Todd JFJ,
Quadrupole Ion Trap Mass spectrometry, 2nd edn,
(Willey-Interscience), 2005,165.
19. Bhattacharya S, Gupta
Anita, Nakhate S G, Rao Pushpa M, Pramana: J Phys, 67(2006)1087;
doi: 10.1007/s12043-006-0025-x
20. Rao P M, Gupta Anita,
Pramana: J Phys, 78(2012)109-120.
21. Alheit R, Enders K, Werth
G, Appl Phys B, 62(1996)511-513.
22. Paasche P, Valenzuela T,
Biswas D, Angelescu C, Werth G, Eur Phys J:D,
18(2002)295-300.
23. Alheit R, Chu X Z, Hoefer
M, Holzki M, Werth G, Blümel R, Phys Rev A, 56(1997)4023;
doi.org/10.1103/PhysRevA.56.4023
24. Schaaf H, Schmeling U,
Werth G, Appl Phys, 25(1981)249; doi:10.1007/BF00902978
25. Vedel F, Andre J, Vedel M,
Brincourt G, Phys Rev A, 27(1983)2321;
doi.org/10.1103/PhysRevA.27.2321
26. Hou J, Wang Y, Yang
D, J Appl Phys, 88(2000)4334;
doi:10.1063/1.1286232
___________________________________________________________________________________________________________________________________
© ANITA PUBLICATIONS
All rights reserved
Designed & Maintained by
Manoj
Kumar