ap
An International Peer Reviewed Research Journal
AJP
SSN : 0971 - 3093
Vol 25, No 10, October, 2016
25th Anniversary Year of AJP-2016
Special issue
on
Advances in High Precision Spectroscopy and
Tests of Fundamental Physics,
Part-2
Edited by
Bijaya Kumar Sahoo
Asian Journal of Physics
(A Publication Not for Profit)
Vol. 25, No 10 (2016)
CONTENTS
Guest Editorial
About the Guest Editor
Light shifts induced by nuclear spin-dependent parity-nonconserving transitions of ultracold Fr for the detection of nuclear anapole moment
T Aoki, Y Torii, B K Sahoo, B P Das, K Harada, T Hayamizu, K Sakamoto, H Kawamura, T Inoue, A Uchiyama, S Ito, R Yoshioka,
K STanaka, M Itoh, A Hatakeyama, and Y Sakem 1247
The role of molecular electric dipole moments of mercury monohalides in the search for the electron electric dipole moment
V S Prasannaa, M Abe, B P Das 1259
Testing the standard model at low energies with atoms and molecules -searching for permanent electric
dipole moments and atomic parity violation
Klaus P Jungmann 1267
Electron
impact excitation of inert gases and plasma
modeling
Priti, Lalita Sharma and Rajesh Srivastava 1281
Towards atomic parity violation test on barium ion
M Mukherjee, S Das, D De Munshi, T Dutta, N V Horne, P Liu, R Rebhi and D Yum 1291
The quest to find an electric dipole moment of the neutron
P Schmidt-Wellenburg 1301
Optical cooling of interacting atoms in a tightly confined trap
Somnath Naskar, Subrata Saha, Partha Goswami, Arpita Pal and Bimalendu Deb 1331
A survey on modelling and structural modification of atomic systems in plasma environment
S Dutta, J K Saha, S Bhattacharyya and T K Mukherjee 1339
Lepton number and flavour violation in models of neutrino mass generation
Frank F Deppisch 1383
EDMS of Closed-shell Atoms: An example of Xe atom
Koichiro
Asahi, Tomoya Sato and Yuichi
Ichikawa
1403
Asian journal of Physics Vol 25, No 10 (2016) 1247-1258
Light shifts induced by nuclear spin-dependent
parity-nonconserving interactions
in ultracold Fr for the detection of the nuclear anapole
moment
T Aoki1, Y. Torii1, B. K. Sahoo2, B P Das3, K Harada4, T Hayamizu4, K Sakamoto4,
H Kawamura 4,5, T Inoue 4,5, A Uchiyama4, S Ito4, R Yoshioka4, K S Tanaka4, M Itoh4, A Hatakeyama6, and Y Sakemi4
1Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
2Theoretical Physics Division, Physical Research Laboratory, Ahmedabad-380 009, India
3International Education and Research Center of Science and Department of Physics, Tokyo Institute of Technology
2-1-2-1-H86 Ookayama Meguro-ku, Tokyo 152-8550, Japan
4Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578, Japan
5Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
6Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
___________________________________________________________________________________________________________________________________
We investigate light shifts induced due to the nuclear spin-dependent (NSD) parity-nonconserving (PNC) interactions for the 7S1/2 – 6D5/2 transition in ultracold 210Fr. We find that for this transition the magnetic sublevels of F =13/2, M = 9/2 and F = 13/2, M = 7/2 shift by the same amount in the same direction due to the E2 transition and by different amounts in opposite directions due to the NSD PNC transition. This situation is favourable for measuring the nuclear anapole moment. For the above mentioned transition, the frequency difference of the F = 13/2, M = 1/2 to F = 13/2, M = –1/2 and the F = 13/2, M = 9/2 to F = 13/2, M = 7/2 transitions has no first order Zeeman shift and a small second order Zeeman shift. Measuring this frequency difference enables us to obtain information on the nuclear anapole moment, and it is insensitive to magnetic field fluctuation.© Anita Publications. All rights reserved.
Keywords: Precise measurement, Parity nonconservation, laser cooling, francium
Total Refs: 21
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 25
No 10, 2016, 1259-1266
The role of molecular electric dipole moments of mercury monohalides in the
search for the electron electric dipole moment
V S Prasannaa1, M Abe2, B P Das
1Indian Institute of Astrophysics, II Block, Koramangala, Bangalore-560 034, India
2Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji-city, Tokyo 192-0397, Japan
3International Education and Research Center of Science and Department of Physics,
Tokyo Institute of Technology, 2-12-1-H86 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
___________________________________________________________________________________________________________________________________
The molecular electric dipole moments, also referred to as the permanent electric dipole moments (PDMs), play an important role, in the sensitivity of the experiments that use molecules to probe the electric dipole moment of the electron (eEDM). In an earlier work, we had identified mercury monohalides as promising candidates for such experiments. Here, we have computed their PDMs for the first time, using a relativistic coupled cluster method (RCCM). We also present a detailed analysis of the correlation terms that we considered for the PDM, for each of the molecules, and study their trends. We also elucidate the role of PDMs in the sensitivity of prospective future EDM experiments with these molecules.© Anita Publications. All rights reserved.
Keywords: Electric dipole moments, Mercury monohalides
Total
Refs: 28
___________________________________________________________________________________________________________________
Asian Journal of Physics Vol 25, No 10 (2016) 1267-1280
Testing the standard model at low energies with atoms
and
molecules -searching for permanent electric dipole moments and atomic parity violation
Klaus P Jungmann
University of Groningen, Van Swinderen Institute,
NL 9747 AA Groningen, The Netherlands
___________________________________________________________________________________________________________________________________
Precision experiments on atomic and molecular systems provide for testing very accurately important aspects of our present understanding of particle physics, and in particular the best theory to describe it, the Standard Model of Particle Physics (SM). The potential of low energy precise experiments for steering model building exceeds in a number of cases the possibilities of high energy physics experiments signicantly. If searches for yet forbidden processes are successful, hints to New Physics can be obtained. If results of precision measurements agree with present Standard Theory, speculative models can be limited or even disfavoured. Examples of low energy precision experiments with such transformative character are searches for a permanent Electric Dipole Moment (EDM) on atoms or molecules and measurements of Parity Violation (PV) in atoms or molecules. Here we discuss present and near future possibilities to search for New Physics in selected atomic and molecular systems.© Anita Publications. All rights reserved.
Keywords: Parity violation, Permanent electric dipole moment
Total Refs: 86
1. K.A. Olive et al. Chin. Phys. C 38, 090001
(2014); for a general introduction see: R. Oerter, The Theory of
Almost Everything:
The
Standard Model, the Unsung Triumph of Modern Physics, PI Press, New
York, ISBN 0-13-236678-9 (2006).
2. T. Blake, T. Gershon, G.
Hiller, Annu. Rev. Nucl. Part. Sci. 65, 113 (2015).
3. H.V. Klapdor-Kleigrothaus,
Sixty years of double beta decay: From nuclear Physics to beyond
standard model particle physics, World Scientic,
Singapore
ISBN 981-02-3779-0 (2001).
4. Proceedings, 23rd
International Conference on Atomic Physics (ICAP 2012), Ol. Dulieu,
P. Grangier, M. Leduc, H. Perrin (eds.), EPJ Web Conf. 57
(2013).
5. K. Jungmann, Ann. Phys.
525, 550 (2013); T. Fukuyama, Int. J. Mod. Phys. A 27, 1230015
(2012)
6. Sandars P G H, in: Atomic
Physics 4, G. zu Putlitz, E.W. Weber, A. Winnacker (eds.), Plenum,
New York and London, p. 71 (1975).
7. Roberts B M, V.A. Dzuba,
V.V. Flambaum, Nuc. Part. Sci. 65, 63 (2015).
8. (a) S.G. Karshenboim, Phys.
Rep. 422, 1 (2005); Proceedings 11th International Conference on
Low Energy Antiproton Physics (LEAP2013),
T.
Johansson, P. Froehlich, S. Jonsell (eds.), Hyperne Interact. 228
and 229 (2014);
(b) M.G.
Boshier, V.W. Hughes, K. Jungmann, zu Putlitz G, Comments on Atomic
and Molecular Physics 33, 17 (1996).
9. Proceedings of the EXA 2014
Conference, P. Buehler (ed.), Hyperne Interactions 233
(2015).
10. K. Jungmann, arXiv:1603.01195v1
(2016).
11. Boshier M G, Hughes V W, Jungmann K,
zu Putlitz G, Comm. At Mol Phys, 33(1996)17.
12. Rubbia A, Int J Mod Phys A, 19(2004)
3981.
13. CPT and Lorentz Symmetry IV, V.A.
Kostelecky (ed.), World Scientic, Singapore (2014).
14. A. Kostelecky, N. Russell,
arXiv:0801.0287v9 (2016); see also: A. Kostelecky, arXiv:1309.3761
(2013) and J. P. Noordmans, J. de Vries,
R.
G. E. Timmermans, arXiv:1602.00496 (2016).
15. Jungmann K, Nature,
524(2015)168.
16. Colladay D, Kostelecky A, Phys Rev D,
55(1997)6760.
17. Sakharov A D, ETP Lett,
5(1967)24.
18. (a) J. H. Christenson, J. W. Cronin,
V. L. Fitch, R. Turlay, Phys Rev Lett, 13, (1964) 138;
(b) J. H.
Christenson, J. W. Cronin, V. L. Fitch, R. Turlay, Phys Rev, 140,
B74 (1965).
19. L. Willmann and K. Jungmann, Ann.
Phys.528, 108 (2016).
20. K. Jungmann, Ann. d. Phys. 525, 550
(2013).
21. P.G.H. Sandars, Contemporary Physics,
42, 97 (2001).
22. K. Harada, T. Aoki, K. Kato, H.
Kawamura, T. Inoue, T. Aoki, A. Uchiyama, K. Sakamoto, S. Ito, M.
Itoh, T. Hayamizu, A. Hatakeyama, K. Hatanaka,
T.
Wakasa and Y. Sakemi, J. Phys. Conf. Ser. 691, 012017 (2016).
23. B. Yip, Bachelor thesis, University of
Groningen, The Netherlands (2015) and references therein.
24. K. Jungmann, E.A. Dijck, J.Ol.
Grasdijk, T. Meijknecht, A. Mohanty, N. Valappol, B. Yip and L.
Willmann, conference proceedings
LEAP
2013, Kananzawa (in print).
25. V. A. Dzuba, V. V. Flambaum, J. S. M.
Ginges, M. G. Kozlov, Phys Rev A, 66, 012111 (2002).
26. D. Mukherjee, B.K.Sahoo, H.S. Nataraj,
B.P. Das, J. Phys. Chem. A 113, 12549 (2009).
27. P.G.H. Sandars, Physica Scripta, 1993,
T46, 16 (1993).
28. B. K. Sahoo, L. W. Wansbeek, K.
Jungmann, and R. G. E. Timmermans, Phys Rev A, 79, 052512
(2009).
29. B.M. Roberts, V.A. Dzuba, V.V.
Flambaum, Annu. Rev. Nucl. Part. Sci. 65, 63 (2015) and references
therein.
30. B. Graner, Y. Chen, E.G. Lindahl, B.R.
Heckel, Phys. Rev. Lett. 116, 161601 (2016).
31. Pendlebury J M, Afach S, Ayres N J,
Baker C A, Bison G Ban G, Bodek K, Burgho M, Geltenbort P, Green K,
Grith W C, van der Grinten M, Gruji Z D, Harris P G, Hlaine V,
Iaydjiev P, Ivanov S N, Kasprzak M, Kermaidic Y, Kirch K, Koch
H.-C, Komposch S, Kozela A, Krempel J, Lauss B, Lefort T, Lemiere
Y, May D J R, Musgrave M, Naviliat-Cuncic O, Piegsa F M, Pignol G,
Prashanth P N, G. Quemener, Rawlik M, Rebreyend D, Richardson J D,
Ries D, Roccia S, Rozpedzik D, Schnabel A, Schmidt-Wellenburg P,
Severijns N, Shiers D, Thorne J A, Weis A, Winston O J, Wursten E,
Zejma J, Zsigmond G, Phys Rev D, 92(2015)092003.
32. R.H. Parker, M.R. Dietrich, M.R.
Kalita, N.D. Lemke, K.G. Bailey, M. Bishof, J.P. Greene, R.J. Holt,
W. Korsch, Z.-T. Lu, P. Mueller, T.P. O'Connor,
and
J.T. Singh, Phys. Rev. Lett. 114, 233002 (2015).
33. M.A. Rosenberry and T.E. Chupp,
Phys. Rev. Lett. 86, 22 (2001).
34. J.J. Hudson, D.M. Kara, I.J.
Smallman, B.E. Saurer, M.R. Tarbutt, E. Hinds, Nature 473, 493
(2011).
35. J. Baron, Campbell, W.C.
Campbell, D. DeMille, J.M. Doyle, G. Gabrielse, Y.V. Gurvich, P.W.
Hess, N.R. Hutzler, E. Kirilov, I. Kozyryev,
B.R.
O'Leary, C.D. Panda, M.F. Parsons, E.S. Petrik, B. Spaun, A.C.
Vutha, A.D. West, Science, 343, 269 (2014).
36. S. Hoekstra, H.L. Bethlem, A.
Borschevsky, K. Jungmann, R.G.E. Timmermans, W. Ubachs, L. Will-
mann, priv. com. (2016).
37. F. Almendinger, J.O. Grasdijk,
W. Heil, K. Jungmann, S. Karpuk, H.-J. Krause, A. Oenhaeuser, M.
Repetto, U. Schmidt, Y. Sobolev, L. Willmann,
S.
Zimmer, Verhandl. DPG, HK 30.2, Darmstadt (2016).
38. C. Mrozik, O. Endner, C. Hauke,
W. Heil, S. Karpuk, J. Klemmer, E.W. Otten, J. Phys. 294, 012007
(2011).
39. M. Repetto, S. Zimmer, F.
Allmendinger, P. Blmler, M. Doll, J.O. Grasdijk, W. Heil, K.
Jungmann, S. Karpuk, H.-J. Krause, A. Oenhaeusser,
U.
Schmidt, Y. Sobolev, L. Willmann, J. Mag. Res. 265, 197
(2016).
40. J.S.M. Ginges and V.V.
Flambaum,Phys. Rep. 397, 63 (2004).
41. D. DeMille, Physics Today 68, 34
(2015).
42. P.G.H. Sandars, Phys. Rev. Lett.
19, 1396 (1969).
43. E.A. Hinds, Physica Scripta T70,
34 (1997).
44. G. E. Harrison, P. G. H.
Sandars, S. J. Wright, Phys. Rev. Lett. 22, 1263 (1969).
45. J. F. Barry, E. S. Shuman, E. B.
Norrgard, D. DeMille, Phys. Rev. Lett. 108, 103002 (2012).
46. P. Jansen, M. Quintero-Perez,
T.E. Wall, J.E.v.d. Berg, S. Hoekstra, H.L. Bethlem, Phys Rev A,
88, 04324 (2013).
47. J.E. van den Berg, S.C.
Mathavan, C. Meinema, J. Nauta, T.H. Nijbroek, K. Jungmann, H.L.
Bethlem, S. Hoekstra, J. Mol. Spectr. 300, 22 (2014).
48. M. Quintero-Perez, P. Jansen,
T.E. Wall, J.E.v.d. Berg, S. Hoekstra, H.L Bethlem, Phys. Rev.
Lett. 110, 133003 (2013).
49. M.A. Bouchiat, J. Guena, L.
Pottier, L. Hunter, Phys. Lett. 134B, 463 (1984).
50. C.S. Wood, S.C. Bennett, D. Cho,
B.P. Masterson, J.L. Roberts, C.E. Tanner, C.E. Wiemen, Science
275, 1759 (1997); C.S. Wood, C.E. Wieman,
Phys.
Rev. Lett. 82, 2484 (1999).
51. M.A. Bouchiat and C. Bouchiat,
Rep. Prog. Phys. 60, 1351 (1997).
52. L.W. Wansbeek, PhD thesis,
University of Groningen, The Netherlands (2011) and references
therein.
53. B. K. Sahoo, B. P. Das, R. K.
Chaudhuri, and D. Mukherjee, Phys Rev A, 75, 032507 (2007).
54. K. Tsigutin, D. Dounas-Frazer,
A. Family, J.E. Stalnaker, V.V. Yashuk, D. Budker, Phys. Rev. Lett.
103, 071601 (2009).
55 (a) L.W. Wansbeek, B.K.
Sahoo, R.G.E. Timmermans, K. Jungmann, B.P. Das, D. Mukherjee, Phys
Rev A, 78, 050501(R) (2008);
(b) B.M.
Roberts, V.A. Dzuba, V.V. Flambaum, Phys Rev A, 89, 012502
(2014);
(c) V.A.
Dzuba, V.V. Flambaum, Int. J. Mod. Phys. 21, 1230010 (2012) ; R.
Pal, D. Jiang, M.S. Safronova, Phys Rev A, 79, 062505 (2009);
(d)
B.K. Sahoo, B.P. Das, R.K. Chaudhari, D. Mukherjee, R.G.E.
Timmer-mans, K. Jungmann, Phys. Rev. A 76, 040504 (2007).
56. B.K. Sahoo, R. Chaudhuri, B. P.
Das, D. Mukherjee Phys. Rev. Lett. 96, 163003 (2006).
57. S. Aubin, J. A. Behr, R.
Collister, V. V. Flambaum, E. Gomez, G. Gwinner, K. P. Jackson, D.
Melconian, L. A. Orozco, M. R. Pearson, D. Sheng,
G.
D. Sprouse, M. Tandecki, J. Zhang, Y. Zhao, Hyperne Interactions
214, 163 (2013).
58. E. Mariotti, A. Khanbekyan, C.
Marinelli, L. Marmugi, L. Moi, L. Corradi, A. Dainelli,R .
Calabrese, G. Mazzocca, L. Tomassetti, Int. J. Mod.
Phys.
E
23, 05 (2014).
59. N. Fortson, Phys. Rev. Lett. 70,
2383 (1993).
60. O. O. Versolato, G. S. Giri, L.
W. Wansbeek, J. E. van den Berg, D. J. van der Hoek, K. Jungmann,
W. L. Kruithof, C. J. G. Onderwater, B. K. Sahoo,
B.
Santra, P. D. Shidling, R. G. E. Timmermans, L. Willmann, and H. W.
Wilschut, Phys Rev A, 82, 010501(R) (2010).
61. BK Sahoo, BP Das, RK Chaudhuri,
D Mukherjee, RGE Timmermans, K Jungmann, Phys. Rev. A 76, 040504
(2007).
62. A. Mohanty, Lifetimes. Level
Energies and Light shifts in a Single Trapped Ba+ Ion, PhD thesis,
University of Groningen, submitted (2016).
63. A. Mohanty, E.A. Dijck, N.
Valappol, T. Meijknecht, L. Willmann, K. Jungmann, publ. in
preparation.
64. U. Dammalapati, K. Jungmann,
L.Willmann, J. Phys. Chem. Ref. Data 45, 013101 (2016).
65. G. S. Giri, O. O. Versolato, J.
E. van den Berg, O. Boell, U. Dammalapati, D. J. van der Hoek, K.
Jungmann, W. L. Kruithof, S. Mller, M. Nunez
Portela,
C.
J. G. Onderwater, B. Santra, R. G. E. Timmermans, L. W. Wansbeek,
L. Willmann, and H. W. Wilschut, Phys Rev A, 84, 020503(R)
(2011)
66. O.O. Versolato, L.W. Wansbeek,
G.S. Giri, J.E.v.d. Berg, D.J.v.d. Hoek, K. Jungmann, W.L.
Kruithof, C.J.G. Onderwater, B.K. Sahoo, B.
Santra,
P.D.
Shidling, R.G.E. Timmermans, L. Willmann, H.W. Wilschut, Hyperne
Interactions 199, 9 (2011).
67. M. Nunez Portela, E. A. Dijck,
A. Mohanty, H. Bekker, J. E. van den Berg, G. S. Giri, S. Hoekstra,
C. J. G. Onderwater, S. Schlesser,
R.G.E.
Timmermans, O.O. Versolato, L. Willmann, H.W. Wilschut, K.
Jungmann, Appl. Phys. B 114, 173 (2014).
68. A. Mohanty, E.A. Dijck, M. Nunez
Portela, N. Valappol, A.T. Grier, T. Meijknecht, L. Willmann, K.
Jungmann, Hyperne Interaction 233, 113 (2015)
and
references therein.
69. B. K. Sahoo, R. Chaudhuri, B. P.
Das, D. Mukherjee, Phys. Rev. Lett. 96, 163003 (2006).
70. B. K. Sahoo, and B. P. Das, Phys
Rev A, 86, 022506 (2012).
71. Safronova M S, Phys Rev A, 81,
052506 (2010).
72. E. Iskrenova-Tchoukova, and M.
S. Safronova, Phys Rev A, 78, 012508 (2008).
73. J. Gurell, E. Biemont, K.
Blagoev, V. Fivet, P. Lundin, S. Mannervik, L. O. Norlin, P.
Quinet, D. Rostohar, P. Royen, and P. Schef, Phys Rev
A,
75,
052506 (2007).
74. C. Guet, and W. R. Johnson, Phys
Rev A, 76, 039905(E) (2007).
75. V. A. Dzuba, V. V. Flambaum, J.
S. M. Ginges, Phys Rev A, 63, 062101 (2001).
76. C. Guet, W.R. Johnson, Phys Rev
A, 44, 1531 (1991).
77. C. Auchter, T. W. Noel, M. R.
Homan, S. R. Williams, B. B. Blinov, Phys Rev A, 90, 060501(R)
(2014).
78. P. Royen, J. Gurell, P. Lundin,
L. O. Norlin, and S. Mannervik, Phys Rev A, 76, 030502(R)
(2007).
79. N. Yu, W. Nagourney, and H.
Dehmelt, Phys. Rev. Lett. 78, 4898 (1997).
80. A. A. Madej, and J. D. Sankey,
Phys Rev A, 41, 2621 (1990).
81. W. Nagourney, J. Sandberg, H.
Dehmelt, Phys. Rev. Lett. 56, 2797 (1986).
82. Plumelle F, Desaintfuscien M,
Duchene J L, Audoin C, Opt Commun, 34(1980)71.
83. E.A. Dijck, PhD thesis in
preparation (2016).
84. Dijck E A, Portela M N, Grier A
T, Jungmann K, Mohanty A, Valappol N, Willmann L, Phys Rev A,
91(2015)060501(R);
doi.org/10.1103/PhysRevA.91.060501. e.a.dijck@rug.nl
85. Karlsson H, Litzen U, Physica Scripta, 60(1999)
321.
86. (a) Davoudiasl H, Lee H.-S, Marciano W J, Phys Rev
D, 89(2014)095006;
(b) Kumar K S, Mantry
S, Marciano W J, Souder P A, Ann Rev Nucl Part Sci,
63(2013)237.
(c) Davoudiasl H, Lee H
S, Marciano W J, Phys Rev D, 92(2015)055005;
doi.org/10.1103/PhysRevD.92.055005.
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol 25, No 10 (2016) 1281-1289
Electron impact excitation of inert gases and plasma modeling
Priti, Lalita Sharma and Rajesh Srivastava
Indian Institute of Technology Roorkee, Roorkee –247 667, India
___________________________________________________________________________________________________________________________________
A review of our recent studies using the relativistic distorted wave theory on electron impact excitation of argon and krypton is given along with the applications of the calculated fine–structure resolved cross sections to develop the collisional radiative models for Ar- and Kr- plasma. Fitting parameters of the excitation cross sections for various transitions are provided for plasma modeling purposes. New results for the excitation rate coefficients are presented as a function of increasing electron temperature in plasma © Anita Publications. All rights reserved.
Keywords: Plasma diagnostics; Electron impact excitation;Electron temperature, Electron density
Total Refs: 25
1. Zhu X M, Pu Y K, J Phys: D
Appl Phys, 43(2010)403001;
doi.org/10.1088/0022-3727/43/40/403001
2. Hartgers A, van Dijk J, Jonkers J, van der
Mullen J A M, Comput Phys Commun, 135(2001)199; doi:
10.1016/S0010-4655(00)00231-9
3. Bostock C J, J Phys. B, 44(2011) 083001. doi:
10.1088/0953-4075/44/8/083001
4. Bostock C J, Fursa D V, Bray I, Phys Rev A,
80(2009) 052708. doi: 10.1103/PhysRevA.80.052708
5. Zatsarinny O, Bartschat K, Phys Rev A,
79(2009) 042713;doi: 10.1103/PhysRevA.79.042713
6. Srivastava R, Stauffer A D, Sharma L, Phys Rev
A, 74(2006) 012715; doi: 10.1103/PhysRevA.74.012715
7. Jonsson P, He X, Fischer C Froese, Grant I P,
Comput Phys Commun, 177(2007)597; doi:
.10.1016/j.cpc.2007.06.002
8. Sharma L, Surzhykov A, Inal M K, Fritzsche S,
Phys Rev A, 81(2010)023419; doi:
10.1103/PhysRevA.81.023419
9. Weber T, Boffard J B, Lin C C, Phys Rev A,
68(2003)032719; doi: 10.1103/PhysRevA.81.023419
10.
Chilton J E, Lin C C, Phys Rev A, 60(1999)3712; doi:
10.1103/PhysRevA.60.3712
11.
Chilton J E, Stewart M D (Jr), Lin C C, Phys Rev A, 62(2000)032714;
doi: 10.1103/PhysRevA.62.032714
12.
Trajmar S, Srivastava S K, Tanaka H, Nishimura H, Cartwright D C,
Phys Rev A, 23(1981)2167; doi:
10.1103/PhysRevA.23.2167
13.
Kaur S, Srivastava R, McEachran R P, Stauffer A D, J Phys B,
31(1998)4833; 10.1088/0953-4075/31/21/015
14.
Sharma L, Srivastava R, Stauffer A D, Phys Rev A, 76(2007)024701;
doi: 10.1103/PhysRevA.76.024701
15.
Sharma L, Srivastava R, Stauffer A D, Eur Phys J: D, 62(2011)399;
doi: 10.1140/epjd/e2011-10644-0
16.
Gangwar R K, Sharma L, Srivastava R, Stauffer A D, Phys Rev A,
81(2010)052707; doi:10.1103/PhysRevA.81.052707
17.
Gangwar R K, Sharma L, Srivastava R, Stauffer A D, Phys Rev A,
82(2010) 032710; doi:
032710.10.1103/PhysRevA.82.032710
18.
Gangwar R K, Sharma L, Srivastava R, Stauffer A D, J Appl Phys,
111(2012)053307.
19.
Straub H C, Renault P, Lindsay B G, Smith K A, Stebbings R F, Phys
Rev A, 52(1995)1115.
20.
Ali M A, Stone P M, Int J Mass Spectrom. 271(2008) 51.
21.
Dressler R A, Chiu Y H, Zatsarinny O, Bartschat K, Srivastava R,
Sharma L, J Phys D, 42(2009) 185203.
22.
For more information, see the NIST 2010 Atomic Spectra database
(http://www.nist.gov/pml/data/asd.cfm).
23.
Wiese W L, Brault J W, Danzmann K, Helbig V, Kock M, Phys Rev A,
39(1989)2461.
24.
Palmero A, Hattum E D, Rudolph H, Habraken F H P M, J Phys D,
101(2007)053306.
25.
Gangwar R K, Dipti, Stafford L, Srivastava R, Plasma Sources Sci.
Technol, 25 (2016)
035025.
___________________________________________________________________________________________________________________________________
Asian journal of Physics
Vol 25, No 10 (2016)
1291-1298
Towards atomic parity violation test on barium ion
M Mukherjee1,2,3, S Das4, D De Munshi1, T Dutta1, N V Horne, P Liu1, R Rebhi1, and D Yum1
1Centre for Quantum Technologies, National University Singapore, Singapore 117543
2Department of Physics, National University Singapore, Singapore 117551
3Maju Lab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore
___________________________________________________________________________________________________________________________________
Precision measurement in atomic and molecular physics unveils fundamental properties of nature and its forces. Electro-weak interaction and its manifestation in atomic system is the focus of this article. In a series of experiments performed with trapped and laser cooled ions, it is now possible to pin down the uncertainties of our knowledge about the atomic physics of a heavy system like barium ion to a level below one percent. This also laid down the foundation of an atomic parity violation experiment to be performed with this ion in an ion trap with a precision which can in principle compete to the energy scale of present day large hadron collider (LHC).© Anita Publications. All rights reserved.
Keywords: Atomic system, Atomic Parity, Barium, Laser cooling
Total Refs:27
1. Gabrielse G, Hanneke D, Kinoshita T, NioM,
Odom B, Phys Rev Lett, 97(2006)030802;
doi.10.1103/PhysRevLett.97.030802
2. Wood C S, Bennett S C, Cho
D, Masterson B P, Roberts J L,Tanner C E, Wieman C E, Science,
275(1997)1759-1763.
3. Pruttivarasin T, Ramm M,
Porsev S G, Tupitsyn I I, Safronova M S, Hohensee M A, Häffner H,
Nature, 517, 592 (2015)592-595; doi:10.1038/nature14091
4. Wolfenstein L, Rev Mod
Phys, 71(1999)S140; doi:10.1103/RevModPhys.71.S140
5. Ginges J S M, Flambaum V V,
Phys Rep, 397(2004)63-154; 10.1016/j.physrep.2004.03.005
6. Mukherjee M, Kellerbauer A,
Beck D, Blaum K, Bollen G, Carrel F, Delahaye P, Dilling J, George
S, Guénaut C, Herfurth F, Herlert A, Kluge H.-J,
Köster U, Lunney D, Schwarz S, Schweikhard L, Yazidjian C, Phys Rev
Lett, 93(2004)150801;
doi:10.1103/PhysRevLett.93.150801
7. Zee A, Quantum feld theory in a nutshell,
(Princeton University Press), ISBN: 9780691140346,
2003,
8. Ellis J, Phil Trans R Soc, A370(2012)818; doi:
10.1098/rsta.2011.0452
9. Carlson Carl E, arxiv.org:1502.05314
(2015).
10.
Fortson N, Phys Rev Lett, 70(1993)2383; doi:
10.1103/PhysRevLett.70.2383
11.
Mandal P, Mukherjee M, Phys Rev A, 82(2010)050101(R);
10.1103/PhysRevA.82.050101
12.
Sahoo B K, Mandal P, Mukherjee M, Phys Rev A, 83(2011)030502(R);
doi:10.1103/PhysRevA.83.030502
13.
Ramm M, Pruttivarasin T, Kokish M, Talikdar I, Haener H, Phys Rev
Lett, 111(2013)023004;doi:10.1103/
PhysRevLett.111.023004
14.
Munshi D De, Dutta T, Rebhi R, Mukherjee M, Phys Rev A,
91(2015)040501(R); doi:10.1103/PhysRevA.91.040501
15.
Dutta Tarun, Munshi Debashis De, Yum Dahyun, Rebhi Riadh, Mukherjee
Manas, Scientifc Reports, 6(2016) 29772;
arXiv:1604.01488
16.
Dijck E A, Nuñez Portela M, Grier A T, Jungmann K, Mohanty A,
Valappol N, Willmann L, Phys Rev A, 91(2015) 060501-5(R);
doi.org/10.1103/PhysRevA.91.060501
17.
Hettrich M, Ruster T, Kaufmann H, Roos C F, Schmiegelow C T,
Schmidt-Kaler F, Poschinger U G, Phys Rev Lett, 115(2015)143003;
doi.org/10.1103/PhysRevLett.115.143003
18.
Gopakumar G, Merlitz H, Chaudhuri R K, Das B P, Mahapatra U S,
Mukherjee D, Phys Rev A, 66(2002)032505;
doi.org/10.1103/PhysRevA.66.032505
19.
Dzuba V A, Flambaum V V, Ginges J S M, Phys Rev A, 63(2001)062101;
doi: 10.1103/PhysRevA.63.062101
20.
Guet C, Johnson W R, Phys Rev A, 44(1991)1531; doi:
10.1103/PhysRevA.44.1531
21.
(a) Sahoo B K, Das B P, Chaudhuri R K, Mukherjee D, Phys Rev A,
75(2007)032507; doi: 10.1103/PhysRevA.75.032507
(b) Sahoo B K, Chaudhuri R K,
Das B P, Mukherjee D, Phys Rev Lett, 96(2006)163003;
doi:10.1103/PhysRevLett.96.163003
22.
Kastberg A, Kastberg A, Villemoes P, Arnesen A, Heijkenskjöld F,
Langereis A, Jungner P, Linnæus S, J Opt Soc Am B,
10(1993)1330-1336.
23.
Safronova U I, Phys Rev A, 81(2010)052506;
doi:10.1103/PhysRevA.81.052506
24.
(a) Dutta N, Majumder S, Phys Rev A, 90(2014)012522-6; doi:
10.1103/PhysRevA.90.012522
(b) Kuske P, Kirchner N,
Wittmann W, Andrä H J, Kaiser D, Phys Lett,
64A(1978)377-380.
25.
Davidson M D, Snoek L C, Volten H, Dönszelmann A, Astron Astrophys,
255(1992)457-458.
26.
Gallagher A, Phys Rev, 157(1967)24; doi:
10.1103/PhysRev.157.24
27.
Kurz N, Dietrich M R, Shu G, Bowler R, Salacka J, Mirgon V, Blinov
B B, Phys Rev A,77(2008)060501(R); doi:
10.1103/PhysRevA.77.060501
___________________________________________________________________________________________________________________________________
Asian journal of Physics Vol 25, No 10 (2016) 1301-1329
The quest to find an electric dipole moment of the neutron
P Schmidt-Wellenburg
Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
___________________________________________________________________________________________________________________________________
Until now no electric dipole moment of the neutron (nEDM) has been observed. Why it is so vanishingly small, escaping detection for the last 65 years, is not easy to explain. In general it is considered as one of the most sensitive probes for the violation of the combined symmetry of charge and parity (CP). A discovery could shed light on the poorly understood matter/antimatter asymmetry of the Universe. The neutron EDM might one day help to distinguish different sources of CP-violation in combination with measurements of paramagnetic molecules, diamagnetic atoms and other nuclei. This review presents an overview of the most important concepts in searches for an nEDM as well as a brief overview of the worldwide efforts. © Anita Publications. All rights reserved.
Keywords: Precise measurement; Parity nonconservation, Laser cooling, Francium
Total Refs: 118
___________________________________________________________________________________________________________________________________
Asian journal of Physics
Vol 25, No 10 (2016)
1331-1338
Optical cooling of interacting atoms in a tightly confined trap
Somnath Naskar1,2, Subrata Saha1, Partha Goswami1, Arpita Pal1 and Bimalendu Deb1,3
1Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata-700 032, India.
2Department of Physics, Jogesh Chandra Chaudhuri College, Kolkata-700 033, India
3Raman Center for Atomic, Molecular and Optical Sciences, IACS, Jadavpur, Kolkata- 700 032, India.
___________________________________________________________________________________________________________________________________
In a recent paper, we have proposed a novel laser cooling scheme for reducing collisional energy of a pair of atoms by using photoassociative transitions. In that paper, we considered two atoms in free space, that is we have not considered the effects of trap on the cooling process. Here in this paper, we qualitatively discuss the possibility of extending this idea for Raman sideband cooling of a pair of interacting atoms trapped in Lamb-Dicke (LD) regime. Apart from cooling, our method may be important for manipulating on-site interaction of atoms in an optical lattice. © Anita Publications. All rights reserved.
Keywords: optical cooling
Total Refs: 39
1. (a) Anderson M H, Ensher J
R, Matthews M R, Wieman C E, Cornell E A, Science, 269(1995)198;
doi: 10.1126/science.269.5221.198
(b)
Davis K B, Mewes M. -O, Andrews M R, van Druten N J, Durfee D S,
Kurn D M, Ketterle W, Phys Rev Lett, 75(1995)3969;
doi: 10.1103/PhysRevLett.75.3969
(c)
Bradley C C, Sackett C A, Tollett J J, Hulet R G, Phys Rev Lett,
75(1995)1687; doi.org/10.1103/PhysRevLett.75.1687
2. (a) Chin J K, Miller D E,
Liu Y, Stan C, Setiawan W, Sanner C, Xu K, Ketterle W, Nature,
443(2006)961;doi: 10.1038/nature05224
(b)
Zwierlein M W, Schirotzek A, Schunck C H, Ketterle W, Science,
311(2006)492;doi: 10.1126/science.1122318
3. Mandel O, Greiner M, Widera
A, Rom T, Häsch T W, Bloch I, Nature, 425(2003)937; doi:
10.1038/nature02008
4. Hänsch T W, Schawlow A, Opt
Commun, 13(1975)68; doi:10.1016/0030-4018(75)90159-5
5. Wineland D J, Dehmelt H,
Bull Am Phys Soc, 20 (1975)637-637.
6. Wineland D J, Drullinger R
E, Walls F L, Phys Rev Lett, 40(1978)1639;
doi:org/10.1103/PhysRevLett.40.1639
7. Neuhauser W, Hohenstatt M,
Toschek P, Dehmelt H, Phys Rev Lett, 41(1978)233; doi:
org/10.1103/PhysRevLett.41.233
8. Wineland D J, Itano W M,
Phys Rev A, 20(1979)1521; doi:10.1103/PhysRevA.20.1521
9. Askaŕyan G A, Sov Phys,
JETP, 15(1962)1088.
10. Letokhov V, JETP Lett,
7(1968)272.
11. Kastler A, J Phys Rad,11(1950)255;
doi: org/10.1051/jphysrad:01950001106025500
12. Ashkin A, Science, 210(1980)1081;
doi:org/ 10.1126/science.210.4474.1081
13. Letokhov V S, Minogin V G, Physics
Reports, 73(1981)1; doi: doi.org/10.1016/0370-1573(81)90116-2
14. Stenholm S, Rev Mod Phys, 58(1986)699;
doi:org/10.1103/RevModPhys.58.699
15. Cohen-Tannoudji C, Phillips W, Phys
Today, 43(1990)33; doi: org/10.1063/1.881239
16. Metcalf H J, van der straten P, Laser
Cooling and Trapping, (Springer), 1999.
17. Chu S, Hollberg L, Bjorkholm J E,
Cable A, Ashkin A, Phys Rev Lett, 55(1985)48; doi:
org/10.1103/PhysRevLett.55.48
18. Lett P D, Phillips W D, Rolston S L,
Tanner C E, Watts R N, Westbrook C I, J Opt Soc Am B, 6(1989)2084;
doi: doi.org/10.1364/JOSAB.6.002084
19. Chang R, Hoendervanger A L, Bouton Q,
Fang Y, Klafka T, Audo K, Aspect A, Westbrook C I, Cl´ement D, Phys
Rev A,
90(2014)063407;
doi.org/10.1103/PhysRevA.90.063407.
20.
Lett P D, Watts R N, Westbrook C I, Phillips W, Gould P L, Metcalf
H J, Phys Rev Lett, 61(1988)169; doi:
org/10.1103/PhysRevLett.61.169
21.
Dalibard J, Cohen-Tannoudji C, J Opt Soc Am B, 6(1989)2023; doi:
org/10.1364/JOSAB.6.002023
22.
Pritchard D E, Phys Rev Lett, 51(1983)1336;
doi:org/10.1103/PhysRevLett.51.1336
23.
Ungar P J, Weiss D S, Riis E, Chu S, J Opt Soc Am B, 6(1989)2058;
doi: org/10.1364/JOSAB.6.002058
24.
Saha S, Naskar S, Deb B, Phys Rev A, 94(2016)
023413.doi.org/10.1103/PhysRevA.94.023413
25.
Yan M, DeSalvo B J, Huang Y, Naidon P, Killian T C, Phys Rev Lett,
111(2013)150402; doi:
org/10.1103/PhysRevLett.111.150402
26.
Taie S, Watanabe S, Ichinose T, Takahashi Y, Phys Rev
Lett,116(2016) 043202; doi:
org/10.1103/PhysRevLett.116.043202
27.
Vuletić V, Chu S, Phys Rev Lett, 84(2000)3787; doi:org
/10.1103/PhysRevLett.84.3787
28.
Wineland D J, Itano W M, Bergquist J C, Hulet R G, Phys Rev A,
36(1987)5; doi: org/10.1103/PhysRevA.36.2220
29.
DePue M T, McCormick C, WinotoS L, Oliver S, Weiss D S, Phys Rev
Lett, 82(1999)2262; doi:
org/10.1103/PhysRevLett.82.2262
30.
Winoto S L, DePue M T, Bramall N E, Weiss D S, Phys Rev A, 59
(1999)R19(R); doi: org/10.1103/PhysRevA.59.R19
31.
Goswami P, Paul A, Saha S, Deb B, Asian J Phys, 25(2016)
(submitted).
32.
Horak P, Hechenblaikner G, Gheri K M, Stecher H, Ritsch H, Phys Rev
Lett, 79(1997)4974;
doi.org/10.1103/PhysRevLett.79.4974
33.
Hechenblaikner G, Gangl M, Horak P, Ritsch H, Phys Rev A,
58(1998)3030; doi: .org/10.1103/PhysRevA.58.3030
34.
Chen H W, Black A T, Vuletić V, Phys Rev Lett, 90(2003)063003;
doi:org/10.1103/PhysRevLett.90.063003
35.
Maunz P, Puppe T, Schuster I, Syassen N, Pinkse PWH, Rempe G,
Nature, 428(2004)50-52.
36.
(a) Vuletić , Chen H W, Black A T, Phys Rev A, 64(2001)033405doi:
org/10.1103/PhysRevA.64.033405
(b) Zippilli S, Morigi G, Phys
Rev Lett, 95(2005)143001; doi:
org/10.1103/PhysRevLett.95.143001
(c) Zippilli S, Morigi G, Phys
Rev A, 72(2005)053408; doi:
org/10.1103/PhysRevA.72.053408
37.
Chuah B L, Lewty N C, Cazan R, Barett M D, Phys Rev A,
87(2013)043420; doi: org/10.1103/PhysRevA.87.043420
38.
Leibrandt D R, Labaziewicz J, Vuletić V, Chuang I L, Phys Rev Lett,
103(2009)103001; doi:
org/10.1103/PhysRevLett.103.103001
39.
(a) Mølhave K, Drewsen M, Phys Rev A, 62(2000)011401(R); doi:
org/10.1103/PhysRevA.62.011401
(b) Ryjkov V L, Zhao X Z,
Schuessler H A, Phys Rev A, 74(2006)023401; doi:
org/10.1103/PhysRevA.74.023401
(c) Ostendorf A, Zhang C B,
Wilson M A, Offenberg D, Roth B, Schiller S, Phys Rev Lett,
97(2006)243005; doi:
org/10.1103/PhysRevLett.97.243005
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol 25, No 10 (2016) 1339-1381
A survey on modelling and structural modification of atomic
systems in plasma environment
S Dutta1, J K Saha2, S Bhattacharyya3 , and T K Mukherjee 4
1 Belgharia Texmaco Estate School, Kolkata-700056, India
2Department of Physics, Aliah University, IIA/27, Newtown, Kolkata-700 156, India
3Department of Physics, Acharya Prafulla Chandra College, New Barrackpore, Kolkata- 700 131, India
4Department of Physics, Narula Institute of Technology, Agarpara, Kolkata- 700 109, India
___________________________________________________________________________________________________________________________________
In this review article, the effect of plasma environment on the structure of atomic systems has been discussed. With a brief description on basic properties of plasma followed by it’s classification and occurrences in astrophysical and laboratory scenario, we present the necessity of modeling the plasma environment by suitable potential and a detailed analysis on different methodologies of finding the potential within the bulk of plasma. The model potentials take significantly different forms depending upon the nature of the plasma i.e. whether it is classical or quantum, collisional or collision-less etc. Modification of structure along with other spectral properties of atomic systems such as energy levels, binding energies and ionization potential, continuum lowering, removal of degeneracy, static and dynamic polarizabilities, hyperpolarizabilities, oscillator strengths, transition probabilities etc. and collision dynamics of the many electron atoms within plasma environment are discussed. The experimental determination of the plasma parameters i.e. temperature and density by using spectroscopic techniques along with an account of recent X-ray free electron laser plasma experiments are also presented.
Keywords:
Laser cooling, Photoassociative transitions, Raman
sideband
Total Refs: 356
1. Pfalzner S, An Introduction to
Inertial Confinement Fusion (CRC Press, Taylor and Francis Group,
2006).
2. Freidberg J P,
Plasma Physics and Fusion energy (Cambridge University Press,
2007).
3. Hawryluk R J
et. al., Nucl Fusion, 49(2009)065012.
4.
https://www.iter.org/
5. Tonks L,
Langmuir I, Phys Rev, 33(1929)195.
6. Shpatakovskaya
G V, J Exp Theor Phys, 102(2006)466.
7. Ang L K, Zhang
P, Phys Rev Lett, 98(2007)164802.
8. Leontovich M,
Izv Akad Nauk SSR Ser Fiz Mat Nauk, 8(1994)16.
9. Zwicknagel G,
Deutsch C, Phys Rev E, 56(1997)970.
10. Yaqoob F, Ali S, Murtaza
G, Nasim M H, Phys Plas, 9(2002)3629.
11. Ali S, Nasim M H, Murtaza
G, Phys Plas, 10(2003)941.
12. Ali S, Nasim M H, Murtaza
G, Phys Plas, 10(2003)4207.
13. Shukla P K, Mamun A A,
Introduction to Dusty Plasma Physics (Institute of Physics
Publishing, Bristol and Philadelphia, 2002).
14. Goldston R J, Rutherford
P H, Introduction to Plasma Physics (Institute of Physics
Publishing, 1995).
15. Bellan P M, Fundamentals
of Plasma Physics (2004).
16. Gurnett D A,
Bhattacharjee A, Introduction to Plasma Physics (Cambridge
University Press, 2005).
17. Ichimaru S, Rev Mod Phys,
54(1982)1017.
18. Fortov V E, Iakubov I T,
Khrapak A G, Physics of Strongly Coupled Plasma (Oxford University
Press, 2006).
19. Sil A N, Canuto S,
Mukherjee P K, Adv Quantum Chem, 58(2009) and references therein
for comprehensive list of works till 2009.
20. Debye P, Huckel E, Z
Phys, 24(1923)185.
21. Stewart J C, Pyatt Jr. K
D, Ap J, 144(1966)1203.
22. Lifshitz E M, Pitaevskii
L P, Physical Kinetics (Butterworth-Heinemann, UK, 1981).
23. Montgomery D, Joyce G,
Sugihara R, Plasma Phys, 10(1968)681.
24. Cooper G, Phys Fluids,
12(1969)2707.
25. Alexandrov A F,
Bogdankevich L S, Rukhadze A A, Principles of Plasma
Electrodynamics (Springer, New York, 1984).
26. Rostoker N, Nucl Fusion,
1(1961)101.
27. Pines D, J Nucl Energy
Part C Plasma Phys, 2(1961)5.
28. Gradshteyn L S, Ryzhik I
M, Table of Integrals, Series and Products, 7th ed. (Academic, New
York, 1994).
29. Abramowitz M, Stegun I A,
Handbook of Mathematical Functions (Dover, New York, 1972).
30. Steno L, Yu M Y, Shukla P
K, Phys Fluids, 16(1973)450.
31. Bhatnagar P L, Gross E P,
Krook M, Phys Rev, 94(1954)511-525.
32. Rozsnyai B F, Phys Rev A,
5(1972)1137.
33. Salzmann D, Phys Rev,
A49(1994)3729.
34. Stein J, Goldberg I B,
Shalitin D, Salzmann D, Phys Rev, A39(1989)2078.
35. Salzmann D, Stein J,
Goldberg I B, Pratt R H, Phys Rev, A44(1991)1270.
36. Malnoult P, d'Etat B,
Nguyen H, Phys Rev, A40(1989)1983.
37. Furutani Y, Ohashi K,
Shimizu M, Fukuyama A, J Phys Soc Japan, 62(1993)3413.
38. Crowley B J B, Phys Rev A,
41(1990)2179.
39. Dharma-wardana M W C,
Perrot F, Phys Rev, A26(1982)2096.
40. Rozsnyai B, Phys Rev,
A43(1991)3035.
41. Liberman D A, Phys Rev B,
20(1979)4981.
42. Liberman D A, J Quant Spec
Rad Trans, 27(1982)335.
43. Wilson B, Sonnad V, Sterne
P, Isaacs W, J Quant Spec Rad Trans, 99(2006)658.
44. Chihara J, Phys Rev A,
33(1986)2575.
45. Dharma-wardana M W C,
Perrot F, Phys Rev A, 45(1992)5883.
46. Murillo M S, Weisheit J,
Hansen S B, Dharma-wardana M W C, Phys Rev E, 87(2013)063113.
47. Davis J, Blaha M, J Quant
Spec Rad Trans, 27(1982)307.
48. Starrett C E, Daligault J,
Saumon D, Phys Rev E, 91(2015)013104.
49. Dharma-wardana M W C,
Contrib Plasma Phys, 55(2015)85.
50. Thiele R, Son S -K, Ziaja
B, Santra R, Phys Rev A, 86(2012)033411.
51. Son S -K, Thiele R, Jurek
Z, Ziaja B, Santra R, Phys Rev X, 4(2014)031004.
52. Slater J C, Phys Rev,
51(1937)846.
53. Pain J C, Dejonghe G,
Blenski T, J Phys A, 39(2006)4659.
54. Faussurier G, Phys Rev E,
59(1999)7096.
55. Yuan J, Phys Rev E,
66(2002)047401.
56. Lumb S, Lumb S, Prasad V,
Phys Lett A, 379(2015)1263.
57. Lumb S, Lumb S, Nautiyal
V, Eur Phys J. D, 69(2015)176.
58. Kang S, Yang Y C, He J,
Xiong F Q, Xu N, Cent Eur J Phys, 11(2013)584.
59. Stevanovic L J, Milojevic
D, Publ Astron Obs Belgrade No, 91(2012)327.
60. Saha B, Mukherjee P K,
Diercksen G H F, Astron Astroph, 396(2002)337.
61. Saha J K, Mukherjee T K,
Mukherjee P K, Fricke B, Eur Phys J. D, 62(2011)205.
62. Saha B, Mukherjee P K,
Bielinska-Waz D, Karwowski J, J Quant Spec Rad Trans,
92(2005)1.
63. Shukla P K, Steno L,
Bingham R, Phys Lett A, 359(2006)218.
64. Arfken G B, Weber H J,
Harris F E, Mathematical Method For Physicists (Elsevier,
2014).
65. Shukla P K, Eliasson B,
Phys Lett A, 372(2008)2897{2899.
66. Else D, Kompaneets R,
Vladimirov S V, Phys Rev E, 82(2010)026410.
67. Lindhard J, Dan K, Vidensk
Selsk Mat Fys Medd, 28(1954)1.
68. Klimontovich Y L, Silin V
P, Zh Eksp Teor Fiz, 23(1952)151.
69. Dutta S, Saha J K,
Mukherjee T K, Phys Plas, 22(2015)062103.
70. Fichard E E, Franco V, J
Phys A, 13(1980)2331.
71. Shukla P K, Phys Plas,
1(1994)1362.
72. Varma R K, Shukla P K,
Krishan V, Phys Rev E, 47(1993)5.
73. Jung Y D, Astrophys J,
695(2009)917.
74. Hasegawa A, Mima K,
Duong-van M, Phys Rev Lett, 54(1985)2608.
75. Summers D, Thorne R M,
Phys Fluids B, 3(1991)1835.
76. Bryant D A, J Plasma Phys,
56(1996)87.
77. Rubab N, Murtaza G, Phys
Scr, 74(2006)145{148.
78. Ecker G, Weizel W, Ann
Physik, 17(1956)126.
79. Schey H M, Schartz J L,
Phys Rev, 139(1965)B1428.
80. Jackson J L, Klein L S,
Phys Rev, 177(1969)352.
81. Muller-Kirsten H J W,
Vahedi-Faridi N, J Math Phys, 14(1973)1291.
82. Killingbeck J, Phys Lett,
65(1978)180.
83. Dutt R, Mukherji U, Z Phys
A, 302(1981)199.
84. Dutt R, Ray A, Ray P P,
Phys Lett, 83(1981)65.
85. Vrscay E R, Phys Rev A,
33(1986)1433.
86. Smith C R, Phys Rev,
134(1964)5A. : DOI: 10.1103/PhysRev.134.A1235.
87. Iafrate G J, Mendelsohm L
B, Phys Rev, 182(1969)244.
88. Fisher I Z, Krylovich V I,
Sov Phys Tech Phys, 2(1957)1184.
89. Margenau H, Lewis M, Rev
Mod Phys, 31(1959)569.
90. Harris G M, Phys Rev,
125(1962)1131.
91. Krieger J B, Phys Rev,
178(1969)1337.
92. Bonch-Bruevich V L, Glasko
V B, Sov Phys Solid St, 2(1962)371.
93. Rouse C A, Phys Rev,
159(1967)41; 176(1968)423 (Erratum).
94. Rogers F J, Garboske Jr. H
C, Harwood D J, Phys Rev A, 1(1970)1577.
95. Lam C S, Varshni Y P, Phys
Rev A, 4(1971)1875.
96. Nauenberg M, Phys Rev A,
8(1973)2217 .
97. Garavelli S L, Oliveira F
A, Phys Rev Lett, 66(1991)1310.
98. Roussel K M, Connell O,
Phys Rev A, 9(1974)52.
99. McEnnan J, Kissel L, Pratt
R H, Phys Rev A, 13(1976)532.
100. Metha C H, Patil S H,
Phys Rev A, 17(1978)34.
101. Lai C S, Lin W C, Phys
Lett A, 78(1980)335.
102. Dutt R, Mukherji U, Phys
Lett, 90(1982)395.
103. Matthys P, De Meyer H,
Phys Rev A, 38(1988)1168.
104. Stubbins C, Phys Rev A,
48(1993)220.
105. Bielinska-Waz D,
Karwowski J, Saha B, Mukherjee P K, Phys Rev E,
69(2004)016404.
106. Paul S, Ho Y K, Phys
Plas, 16(2009)063302.
107. Qi Y Y, Wang J G, Janev R
K, Phys Rev A, 80(2009)032502.
108. Saha B, Mukherjee P K,
Diercksen G H F, Astron Astrophys, 396(2002)337.
109. Saha J K, Mukherjee T K,
Mukherjee P K, Fricke B, Eur Phys J D, 62(2011)205.
110. Lumb S, Lumb S, Prasad V,
Phys Lett A, 379(2015)1263.
111. Paul S, Ho Y K, Phys
Plas, 15(2008)073301.
112. Paul S, Ho Y K, Phys Rev
A, 79(2009)032714.
113. Paul S, Ho Y K, J Phys B,
43(2010)065701.
114. Bahar M K, Soylu A, Phys
Plas, 21(2014)092703.
115. Bylicki M, Stacho A,
Karwowski J, Mukherjee P K, Chem Phys, 331(2007)346.
116. Pawlak M, Bylicki M, Phys
Rev A, 83(2011)023419.
117. Xie L Y, Wang J G, Janev
R K, Phys Plas, 21(2014)063304.
118. Qi Y Y, Wang J G, Janev R
K, Phys Rev A, 78(2008)062511.
119. Chang T N, Fang T K, Gao
X, Phys Rev A, 91(2015)063422.
120. Qi Y Y, Wu Y, Wang J G,
Qu Y Z, Phys Plas, 16(2009)023502.
121. Zhao L, Ho Y K, Phys
Plas, 11(2004)1695.
122. Lin C, Ho Y K, Phys Plas,
17(2010)093302.
123. Rogers F J, Phys Rev A,
10(1974)2441.
124. Lam C S, Varshni Y P,
Phys Rev A, 27(1983)418.
125. Wang Z, Winkler P, Phys
Rev A, 52(1995)216.
126. Winkler P, Phys Rev E,
53(1996)5517.
127. Lopez X, Sarasola C,
Ugalde J M, J Phys Chem A, 101(1997)1804.
128. Ray D, Mukherjee P K, Eur
Phys J D, 2(1998)39.
129. Ray D, Mukherjee P K, J
Phys B, 31(1998)3479.
130. Mukherjee P K, Karwowski
J, Diercksen G H F, Chem Phys Lett, 363(2002)323.
131. Saha B, Mukherjee T K,
Mukherjee P K, Diercksen G H F, Theor Chem Acc, 108(2002)305.
132. Saha B, Mukherjee P K,
Belinizka-Waz D, Karwowski J, J Quan Spec Rad Trans,
78(2003)131.
133. Kar S, Ho Y K, Chem Phys
Lett, 449(2007)246.
134. Kar S, Ho Y K, J Quan
Spec Rad Trans, 109(2008)445.
135. Kar S, Ho Y K, Phys Rev
A, 80(2009)062511.
136. Kar S, Ho Y K, Phys Rev
A, 81(2010)062506.
137. Lin Y-C, Lin C-Y, Ho Y K,
Phys Rev A, 85(2012)042516.
138. Serra P, Sabre K, J Phys
B, 45(2012)235003.
139. Kar S, Phys Rev A,
86(2012)062516.
140. Kar S, Wang Y S, Li W Q,
Sun X D, Int J Quan Chem, 115(2015)1573.
141. Woltz L A, Jacobs V L,
Hooper Jr. C F, Mancini R C, Phys Rev A, 44(1991)1281.
142. Mancini R C, Kilcrease D
P, Woltz L A, Hooper Jr. C F, Comput Phys Commun,
63(1991)314.
143. Kar S, Ho Y K, Phys Rev
E, 70(2004)066411.
144. Kar S, Ho Y K, New J
Phys, 7(2005)141.
145. Kar S, Ho Y K, Chem Phys
Lett, 402(2005)544.
146. Kar S, Ho Y K, Phys Rev
A, 72(2005)010703(R).
147. Kar S, Ho Y K, J Phys B,
39(2006)2445.
148. Kar S, Ho Y K, J Phys B,
40(2007)1403.
149. Kar S, Ho Y K, Eur Phys J
D, 44(2007)1.
150. Kar S, Ho Y K, Int J Quan
Chem, 108(2008)1491.
151. Kar S, Ho Y K, J Phys B,
42(2009)055001.
152. Kar S, Ho Y K, J Phys B,
42(2009)044007.
153. Kar S, Ho Y K, Phys Rev
A, 79(2009)062508.
154. Kar S, Ho Y K, Phys Rev
A, 83(2011)042506.
155. Chakraborty S, Ho Y K,
Chem Phys Lett, 438(2007)99.
156. Sil A N, Mukherjee P K,
Int J Quan Chem, 102(2005)1061.
157. Saha J K, Bhattacharyya
S, Mukherjee T K, Mukherjee P K, J Phys B, 42(2009)245701.
158. Saha J K, Bhattacharyya
S, Mukherjee T K, Mukherjee P K, J Quan Spec Rad Trans,
111(2010)675.
159. Saha J K, Bhattacharyya
S, Mukherjee T K, International Review of Atomic and Molecular
Physics, 3(2012)1.
160. Kar S, Wang Y, Jiang Z, Li S, Ratnavelu K,
Phys Plas, 21(2014)012105.
161. Hu X Q, Wang Y, Jiang Z,
Jiang P, Kar S, Phys Plas, 22(2015)112107.
162. Basu A, Europhys Lett,
88(2009)Number 5. DOI :
http://dx.doi.org/10.1209/0295-5075/88/53001
163. Basu A, J Phys B,
43(2010)Number 11. DOI :
http://dx.doi.org/10.1088/0953-4075/43/11/115202
164. Basu A, Eur Phys J D,
61(2011)51.
165. Basu A, Eur Phys J D,
65(2011)405.
166. Jiao L, Ho Y K, Phys
Plas, 20(2013)083303.
167. Kar S, Ho Y K, J Phys B,
44(2010)015001.
168. Jiao L, Ho Y K, J Quan
Spec Rad Trans, 144(2014)27.
169. Jiao L G, Ho Y K, Int J
Quan Chem, 113(2013)2569.
170. Saha B, Mukherjee P K,
Waz D B, Karwowski J, J Quan Spec Rad Trans, 92(2005)1.
171. Das M, Chaudhuri R K,
Chattopadhyay S, Mahapatra U S, Mukherjee P K, J Phys B,
44(2011)165701.
172. Xie L Y, Wang J G, Janev
R K, Qu Y Z, Dong C Z, Eur Phys J D, 66(2012)125.
173. Sahoo S, Ho Y K, Phys
Plas, 13(2006)063301.
174. Lin C, Ho Y K, Phys Rev
A, 81(2010)033405.
175. Li H, Kar S, Phys Plas,
19(2012)073303.
176. Li H W, Kar S, Jiang P,
Int J Quan Chem, 113(2013)1493.
177. Kar S, Li H W, Shen Z C,
Cent Eur J Phys, 11(2013)915.
178. Ning N L, Qi Y Y, Chin
Phys B, 21(2012)123201.
179. Hiroshi O, Tokuei S,
Kaoru Y, Diercksen G H F, J Phys B, 38(2005)917.
180. Qi Y Y, Wu Y, Wang J G,
Phys Plas, 16(2009)033507.
181. Shuai K, Juan H, Ning X,
Yong C C, Commun Theor Phys, 62(2014)881.
182. Dutta S, Saha J K,
Chandra R, Mukherjee T K, Phys Plas, 23(2016)042107.
183. Qi Y Y, Ning L N, Phys
Plas, 21(2014)033301.
184. Das M, Das M, Chaudhuri R
K, Chattaopadhyay S, Phys Rev A, 85(2012)042506.
185. Mondal P K, Dutta N N,
Dixit G, Majumder S, Phys Rev A, 87(2013)062502.
186. Saha B, Fritzsche S, Phys
Rev E, 73(2006)036405.
187. Chaudhuri R K,
Chattaopadhyay S, Mahapatra U S, Phys Plas, 19(2012)082701.
188. Das M, Sahoo B K, Pal S,
Phys Rev A, 93(2016)052513.
189. Saha B, Mukherjee P K,
Phys Lett A, 302(2002)105.
190. Sil A N, Saha B,
Mukherjee P K, Phys Lett A, 324(2004)308.
191. Saha B, Mukherjee T K,
Mukherjee P K, Chem Phys Lett, 373(2003)218.
192. Bhattacharyya S, Sil A N,
Mukherjee T K, Mukherjee P K, Vasu P, Int J Quan Chem,
107(2007)946.
193. Bhattacharyya S, Sil A N,
Mukherjee T K, Mukherjee P K, Phys Plas, 14(2007)024503.
194. Sen S, Mandal P,
Mukherjee P K, Eur Phys J D, 62(2011)379.
195. Kar S, Ho Y K, Phys Rev
A, 71(2005)052503.
196. Kar S, Ho Y K, Phys Rev
A, 73(2006)032502.
197. Kar S, Ho Y K, Chem Phys
Lett, 424(2006)403.
198. Bertini L, Mella M,
Bressanini D, Morosi G, Phys Rev A, 69(2004)042504.
199. Mukherjee P K, Fritzsche
S, Fricke B, Phys Lett A, 360(2006)287{290.
200. Kar S, Ho Y K, Phys Lett
A, 368(2007)476.
201. Ghoshal A, Ho Y K, Int J
Quan Chem, 111(2011)4288{4295.
202. Kar S, Ho Y K, Phys Rev
A, 75(2007)062509.
203. Kar S, Ho Y K, Eur Phys J
D, 48(2008)157{165.
204. Ghoshal A, Ho Y K, J Phys
B, 43(2010)115007.
205. Richard J M, Phys Rev A,
67(2003)034702.
206. Bressanini D, Morosi G,
Bertini L, Mella M, Few Body Systems, 31(2002)199-204.
207. Sil A N, Pawlak M,
Mukherjee P K, Bylicki M, Journal of Quantitative Spectroscopy and
Radiative Transfer, 109(2008)873{880.
208. Ho Y K, Kar S, Few Body
Systems, 44(2008)253-256.
209. Pawlak M, Bylicki M, Saha
J K, Mukherjee P K, J Phys B, 42(2009)215701.
210. Pont F, Serra P, Phys Rev
A, 79(2009)032508.
211. Kar S, Ho Y K, Chem Phys
Lett, 506(2011)282{285.
212. Kar S, Ho Y K, Phys Rev
A, 86(2012)014502.
213. Dutta S, Saha J K,
Bhattacharyya S, Mukherjee P K, Mukherjee T K, Phys Scr,
89(2014)015401.
214. Pawlak M, Bylicki M,
Mukherjee P K, J Phys B, 47(2014)095701.
215. Pindzola M S, Loch S D,
Colgan J, Fontes C J, Phys Rev A, 77(2008)062707.
216. Liu L, Wang J G, Janev R
K, Phys Rev A, 77(2008)042712.
217. Basu A, Ghosh A S, Nu Ins
Meth In Phys Res B, 266(2008)522.
218. Basu A, J Phys B,
43(2010)115202.
219. Qi Y Y, Ning L N, Wang J
G, Qu Y Z, Phys Plas, 20(2013)123301.
220. Qi Y Y, Ye D D, Wang J G,
Qu Y Z, Chin Phys B, 24(2015)033403.
221. Zhang S B, Wang J G,
Janev R K, Phys Rev A, 81(2010)032707.
222. Zhang S B, Wang J G,
Janev R K, Phys Rev Lett, 104(2010)023203.
223. Zhang S B, Wang J G,
Janev R K, Qu Y Z, Chen X J, Phys Rev A, 81(2010)065402.
224. Zhang S B, Wang J G,
Janev R K, Chen X J, Phys Rev A, 83(2011)032724.
225. Zammit M C, Fursa D V,
Bray I, Phys Rev A, 82(2010)052705 .
226. Zammit M C, Fursa D V,
Bray I, Janev R K, Phys Rev A, 84(2011)052705.
227. Zammit M C, Fursa D V,
Bray I, Chem Phys, 398(2012)214.
228. Jung Y D, Physics of
Fluids B, 5(1993)3432.
229. Jung Y D, Phys Plas,
2(1995)332.
230. Jung Y D, Yoon J S, J
Phys B, 29(1996)3549.
231. Jung Y D, Phys Plas,
4(1997)21.
232. Cooper J W, Phys Rev A,
128(1962)681.
233. Cooper J W, Phys Rev
Lett, 13(1964)762. Interaction of maxima in the absorption of soft
x rays.
234. Weisheit J C, Shore B W,
The Astro Jour, 194(1974)519.
235. Zhang S B, Qi Y Y, Qu Y
Z, Chen X J, Wang J G, Chin Phys Lett, 27(2010)013401.
236. Rej P, Ghoshal A, Phys
Plas, 21(2014)093507.
237. Nayek S Ghoshal A, Euro
Phys J D, 64(2011)257.
238. Rej P, Ghoshal A, Phys
Plas, 21(2014)113509.
239. Ghoshal A, Kamali M Z M,
Ratnavelu K, Phys Plas, 20(2013)013506.
240. Bhattacharya A, Kamali M
Z M, Ghoshal A, Ratnavelu K, Phys Plas, 20(2013)083514.
241. Nayek S Ghoshal A, Phys
Plas, 19(2012)113501.
242. Ma J, Cheng Y, Wang Y C,
Zhou Y, Phys Plas, 19(2012)063303.
243. Zhou Y, Ratnavelu K,
McCarthy I E, Phys Rev A, 71(2005)042703.
244. Pandey M K, Lin Y C, Ho Y
K, J Phys B, 49(2016)034007.
245. Liu L, Wang J G, J Phys
B, 41(2008)155701.
246. Liu L, Wang J G, Janev R
K, Phys Rev A, 77(2008)032709.
247. Jakimovski D, Liu L, Wang
J G, Janev R K, J Phys B, 43(2010)165202.
248. Zhao Y Q, Liu L, Wang J
G, Janev R K, Xue P, Phys Rev A, 82(2010)022701.
249. Liu L, Wang J G, Janev R
K, Phys Rev A, 79(2009)052702.
250. Fritsch W, Lin C D, Phys
Rep, 202(1991)1.
251. Wu Y, Wang J G, Krstic P
S, Janev R K, J Phys B, 43(2010)201003.
252. Zhang Y, Liu C H, Wu Y,
Wang J G, Qu Y Z, Yan J, Phys Rev A, 82(2010)052706.
253. Zygelman B, Cooper D L,
Ford M J, Dalgarno A, Gerratt J, Raimondi M, Phys Rev A,
46(1992)3846.
254. Pandey M, Lin Y C, Ho Y
K, Phys Plas, 20(2013)022104.
255. Pandey M, Lin Y C, Ho Y
K, Phys Plas, 19(2012)062104.
256. Bhattacharya A, Kamali M
Z M, Ghoshal A, Ratnavelu K, Phys Plas, 22(2015)023512.
257. Bonch-Bruevich V L,
Glasko V B, Sov Phys Dokl, 4(1959)147.
258. Takimoto N, J Phys Soc
Japan, 14(1959)1142.
259. McIrvine E C, J Phys Soc
Japan, 15(1960)928.
260. Hall G L, Phys Chem
Solids, 23(1962)1147.
261. Bonch-Bruevich V L, Kogan
Sh M, Sov Phys Solid State, 1(1960)1118.
262. Yukawa H, Proc Phys Math
Soc Japan, 17(1935)48.
263. Green A E S, Phys Rev,
75(1949)1926.
264. Ghoshal A, Ho Y K, Phys
Rev E, 81(2010)016403.
265. Ghoshal A, Ho Y K, Mod
Phys Lett B, 25(2011)1619.
266. Dutt R, Phys Lett A,
73(1979)310; ibid. 90(1982)395.
267. Ray P P, Ray A, Phys Lett
A, 78(1980)443.
268. Lai C S, Phys Rev A,
26(1982)4.
269. Chatterjee A, Phys Rev A,
34(1986)3.
270. Ikhdair S M, Sever R, Z
Phys D, 28(1993)1.
271. Ghoshal A, Ho Y K, J Phys
B, 42(2009)075002.
272. Ghoshal A, Ho Y K, Phys
Rev A, 79(2009)062514.
273. Ghoshal A, Ho Y K, J Phys
B, 42(2009)175006.
274. Jiang Z, Zhang Y Z, Kar
S, Phys Plas, 22(2015)052105.
275. Nayek S, Ghoshal A, Phys
Scr, 85(2012)035301.
276. Roy A K, Int J Quan Chem,
113(2013)1503.
277. Lumb S, Lumb S, Munjal D,
Prasad V, Phys Scr, 90(2015)095603.
278. Modesto-Costa L, Canuto
S, Mukherjee P K, Phys Plas, 22(2015)032902 .
279. Chaudhuri S K, Mukherjee
P K, Fricke B, Phys Plas, 22(2015)123120.
280. Chaudhuri S K,
Modesto-Costa L, Mukherjee P K, Phys Plas, 23(2016)053305.
281. Salpeter E E, Van Horn H
M, ApJ, 155(1969)183.
282. Itoh N, Ichimaru S, Phys
Rev A, 16(1977)2178.
283. Itoh N, Ichimaru S, Phys
Rev A, 19(1979)2476.
284. Scheibner K, Weisheit J
C, Lane N F, Phys Rev A, 35(1987)1252.
285. Jung Y D, Eur Phys J D,
7(1999)249.
286. Ray D, Phys Rev E,
62(2000)4126.
287. Rozsnyai B F, Phys Rev A,
43(1991)3035.
288. Skupsky S, Phys Rev A,
21(1980)1316.
289. Nguyen H, Koenig M,
Benredjem D, Caby M, Coulaud G, Phys Rev A, 33(1986)1279.
290. Griem H R, Phys Rev A,
38(1988)2943.
291. Seidel J, Arndt S, Kraeft
W D, Phys Rev E, 52(1995)5387.
292. Gupta U, Rajagopal A K,
Phys Rept, 87(1982)259.
293. Sil A N, Saha B,
Mukherjee P K, Int J Quan Chem, 104(2005)903.
294. Bhattacharyya S, Sil A N,
Fritzsche S, Mukherjee P K, Eur Phys J D, 46(2008)1.
295. Hong W P, Jung Y D, J
Plasma Phys, 82(2016)455820101.
296. Li X, Rosmej F B, Eur
Phys Lett, 99(2012)33001.
297. Sil A N, Mukherjee P K,
Int J Quan Chem, 106(2006)465.
298. Sil A N, Bhattacharyya S,
Mukherjee P K, Int J Quan Chem, 107(2007)2708.
299. Sil A N, Anton J,
Fritzsche S, Mukherjee P K, Fricke B, Eur Phys J D,
55(2009)645.
300. Saha J K, Mukherjee T K,
Mukherjee P K, Fricke B, Eur Phys J D, 66(2012)43.
301. Saha J K, Mukherjee T K,
Mukherjee P K, Fricke B, Phys Plas, 20(2013)042703.
302. Bhattacharyya S, Saha J
K, Mukherjee T K, Phys Rev A, 91(2015)042515.
303. Kim C G, Jung Y D, J Appl
Phys, 96(2004)913.
304. Ki D H, Jung Y D, J Appl
Phys, 97(2010)071501.
305. Li H W, Kar S, Eur Phys J
D, 66(2012)304.
306. Kar S, Wang Y, Ho Y K, J
Phys: Conference Series, 635(2015)122001.
307. Jiang P, Kar S, Zhou Y,
Phys Plas, 20(2013)012126.
308. Jiang P, Kar S, Zhou Y,
Few Body Syst, 54(2013)1911-1919.
309. Kar S, Jiang Z, Cheng Y,
Ho Y K, J Phys: Conference Series, 635(2015)052019.
310. Carroll P K, Kennedy E T,
Phys Rev Lett, 38(1977)1068.
311. Kennedy E T, Carroll P K,
J Phys B, 11(1978)965.
312. Bradley D K, Kilkenny J,
Rose S J, Hares J D, Phys Rev Lett, 59(1987)2995.
313. Riley D, Willi O, Rose S
J, Afsar-Rad T, Europhys Lett, 10(1989)135.
314. Riley D, Gizzi L A,
Khattak F Y, Mackinnon A J, Viana S M, Willi O, Phys Rev Lett,
69(1992)3739.
315. Saemann A, Eidmann K,
Golovkin I E, Mancini R C, Andersson E, Forster E, Witte K, Phys
Rev Lett, 82(1999)4843.
316. Shlyaptseva A S, Nilsen
J, Bruch R, Kantsyrev V L, Akulinichev V V, Pivinsky E G, Phys Scr,
52(1995)377.
317. Nantel M, Ma G, Gu S,
C^otfie C Y, Itatani J, Umstadter D, Phys Rev Lett,
80(1998)4442.
318. Woolsey N C, Hammel B A,
Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosse C,
Stamm R, Talin B, Asfaw A, Klein L S, Lee R W,
Phys
Rev E, 57(1998)4650.
319. Hutchinson I H,
Principles of Plasma Diagnostics, Cambridge University Press,
Cambridge (1987).
320. Greig J R, Griem H R,
Zones L A, Odaf T, Phys Rev Lett, 24(1970)3.
321. Aglitskii E V, Boiko V A,
Vinogradov A V, Yukov E A, Sov J Quant Electron, 4(1974)322.
322. Bitter M, Hill K W,
Sauthofi N R, Efthimion P C, Meservey E, Roney W, von Goeler S,
Horton R, Goldman M, Stodiek W, Phys Rev Lett, 43(1979)129.
323. Bollanti S, Lazzaro P D,
Flora F, Letardi T, Palladino L, Reale A, Batani D, Mauri A,
Scafati A, Grilli A, Faenov A Y, Pikuz T A, Pikuz S
A,
Osterheld
A, Phys Scr, 51(1995)326.
324. Gizzi L A, Cecchetti C A,
Galimberti M, Giulietti A, Giulietti D, Labate L, Laville S,
Tomassini P, Phys Plas, 10(2003)4601.
325. Marchuk O, Bertschinger
G, Kunze H J, Urnov A, Goryaev F, TEXTOR-team, J Phys B,
40(2007)4403.
326. Shefield J, Plasma
Scattering of Electromagnetic Radiation, Academic Press, New York
(1975).
327. Narihara K, Yamada I,
Hayashi H, Yamauchi K, Rev Sci Instrum, 72(2001)1122.
328. Boddeker St, Gunter S,
Konies A, Hitzschke L, Kunze H J, Phys Rev E, 47(1990)2785.
329. Boddeker St, Kunze H J,
Oks E, Phys Rev Lett, 47(1995)2785.
330. Suzuki C, Kato T, Sakaue
H A, Kato D, Sato K, Tamura N, Sudo S, Yamamoto N, Tanuma H, Ohashi
H, D'Arcy R, O'Sullivan G,
J
Phys B, 43(2010)074027.
331. Da Silva L B, Barbee Jr.
T W, Cauble R, Celliers P, Ciarlo D, Libby S, London R A, Matthews
D, Mrowka S, Moreno J C, Ress D, Trebes J E,
Wan
A S, Weber F, Phys Rev Lett, 74(1995)3991.
332. Kawahata K, Tanaka K, Ito
Y, Ejiri A, Okajima S, Rev Sci Instrum, 70(1999)707.
333. Smith R F, Dunn J, Nilsen
J, Shlyaptsev V N, Moon S, Filevich J, Rocca J J, Marconi M C,
Hunter J R, Barbee Jr. T W, Phys Rev Lett, 89(2002)065004.
334. Vinci T, Koenig M,
Benuzzi-Mounaix A, Michaut C, Boireau L, Leygnac S, Bouquet S,
Peyrusse O, Batani D, Phys Plas, 13(2006)010702.
335. Hill K W, Beiersdorfer P,
Bitter M, Fredrickson E, von Goeler S, Hsuan H, McGuire K, Sauthofi
N R, Sesnic S, Stevens J E, Course and Workshop
on
Basic and Advanced Diagnostic Techniques for Fusion Plasmas,
Varenna, Italy, Ed. Stott Pet al., 1(1986)16.
336. Beiersdorfer P, Osterheld
A L, Phillips T W, Bitter M, Hill K W, von Goeler S, Phys Rev E,
52(1995)1980.
337. Kallne E, Kallne J, Dubau
J, Marmar E S, Rice J E, Phys Rev Lett, 52(1984)2245.
338. Bitter M, Gu M F,
Vainshtein L A, Beiersdorfer P, Bertschinger G, Marchuk O, Bell R,
LeBlanc B, Hill K W, Johnson D, Roquemore L,
Phys Rev Lett,
91(2003)265001.
339. Biedermann C, Radtke R,
Fournier K B, Phys Rev E, 66(2002)066404.
340. Emma P et al., Nature
Photonics, 4(2010)641.
341. Young Let al., Nature,
466(2010)56.
342. Vinko S M et al., Nature,
482(2012)59.
343. Schlotter W F et
al.,Review of Scientific Instruments, 83(2012)043107.
344. Cho B I et al., Phys Rev
Lett, 109(2012)245003.
345. Ciricosta O et al., Phys
Rev Lett, 109(2012)065002.
346. Ecker G, Kroll W, Phys
Fluids, 6(1963)62.
347. Preston T R, Vinko S M,
Ciricosta O, Chung H K, Lee R W, Wark J S, High Energy Density
Physics, 9(2013)258.
348. Hoarty D J et al., Phys
Rev Lett, 110(2013)265003.
349. Son S K, Thiele R, Jurek
Z, Ziaja B, Santra R, Phys Rev X, 4(2014)031004.
350. Rackstrawa D S et al.,
High Energy Density Physics, 11(2014)59.
351. Vinko S M et al., Nature
Communications, 6(2015)6397.
352. Lfievy A et al., Phys
Plas, 22(2015)030703.
353. Ciricosta O et al.,
Nature Communications, 1(2016)11713.
354. Ziaja B, Jurek Z,
Medvedev N, Saxena V, Son S K, Santra R, Photonics,
2(2015)256.
355. Albert F, Physics,
7(2014)20.
356. Gunst J, Litvinov Y A, Keitel C H, Pfialfiy
A, Phys Rev Lett,
112(2014)082501.
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol 25, No 10 (2016) 1383-1402
Lepton number and flavour violation in models of neutrino mass generation
Frank F Deppisch
Department of Physics & Astronomy,
University College London, London WC1E 6BT, United Kingdom
___________________________________________________________________________________________________________________________________
Models of neutrino mass generation constitute well motivated scenarios of beyond-the-Standard-Model physics. The interplay between high energy collider physics and low energy searches provide us with an effective approach to rule out, constrain and pinpoint such models. In this review article, we highlight the phenomenological impact of neutrino mass models incorporating lepton number violating (LNV) and charged lepton flavour violating (LFV) processes. New sources of LNV and LFV are generally expected to be present in many new physics scenarios beyond the Standard Model to explain non-zero neutrino masses, and their observation would provide crucial information on the nature of the underlying interactions. We will focus on searches for low-energy LNV and LFV processes such as neutrinoless double beta decay and µ→ e γ, but we will also highlight the potential impact of LNV/LFV processes at the LHC. If new physics occurs at a scale accessible by the LHC, the underlying mediators could potentially be probed in high detail. We will give a brief overview of examples where such searches can help determine the mechanism of light neutrino mass generation and potentially falsify baryogenesis mechanisms.© Anita Publications. All rights reserved.
Keywords: Lepton number violating (LNV), lepton flavour violating (LFV), Majorana particles
Total
Refs: 111
1.
Minkowski P, Phys. Lett. B67, 421 (1977).
2. Gell-Mann M, P. Ramond, R. Slansky(1979), Print-80-0576
(CERN).
3. Mohapatra R N, and G. Senjanovic, 091801 44, 912 (1980).
4. Schechter J, and J.W. F. Valle, Phys Rev D, 22, 2227
(1980).
5. Schechter J, and J.W. F. Valle, Phys Rev D, 25, 774
(1982).
6. Fukuda Y et al., 091801 81, 1562-1567 (1998).
7. Ahmad Q R et al., 091801 89, 011301 (2002).
8. Eguchi K et al., 091801 90, 021802 (2003).
9. Nunokawa H, S. J. Parke, and J.W. F. Valle, Prog. Part. Nucl.
Phys. 60, 338-402 (2008).
10 . Pas H, M. Hirsch, H.V. Klapdor-Kleingrothaus, S. G. Kovalenko,
Phys. Lett. B453, 194–198 (1999).
11. Pas H, M. Hirsch, H.V. Klapdor-Kleingrothaus, S. G. Kovalenko,
Phys. Lett. B498, 35–39 (2001).
12. Macolino C, Mod.Phys.Lett. A29(1), 1430001 (2014).
13. Deppisch F F, Hirsch M, Pas H, J Phys, G39(2012)124007.
14. Maltoni M, Schwetz T, Tortola M A, Valle J W F, New J Phys,
6(2004)122, hep-ph/0405172.//?
15. A. Hoecker(2012).
16. Abada A , Comptes Rendus Physique 13, 180-185 (2012), 8 pages,
6 figures/ to appear in C. R. Physique (2011).
17. Feldmann T, PoS BEAUTY2011, 017 (2011).
18. Bhattacharyya G, Leser P, P¨as H, Phys Rev D, 83, 011701
(2011).
19. Joshipura A S and S. D. Rindani, Phys Lett, B260, 149–153
(1991).
20. Branco G, Grimus W, Lavoura L, Phys Lett B,
380(1996)119-126.
21. Kubo J, Mondragon A, Mondragon M, Rodriguez-Jauregui E, Prog
Theor Phys, 109(2003)795-807.
22. Botella F, Branco G, Rebelo M, Phys Lett B,
687(2010)194-200.
23. Froggatt C, H. B. Nielsen, Nucl.Phys. B147, 277 (1979).
24. Barbieri R, L. J. Hall, Nuovo Cim. A110, 1–30 (1997).
25. Barbieri R, L. J. Hall, S. Raby, A. Romanino, Nucl.Phys. B493,
3-26 (1997).
26. Barbieri R, L. J. Hall, A. Romanino, Phys Lett B, 401(1997)
47-53.
27. S. King, JHEP 0508, 105 (2005).
28. S. King and G. G. Ross, Phys Lett B, 520, 243-253 (2001).
29. S. King and G. G. Ross, Phys Lett B, 574, 239-252 (2003),
Dedicated to Ian I. Kogan.
30. J. Adam et al., Nucl.Phys. B834, 1-12 (2010).
31. J. Adam et al., Phy Rev Lett,107, 171801 (2011), 5 pages, 2
figures, accepted for publication at Phys. Rev.Lett.
32. U. Bellgardt et al., Nucl.Phys. B299, 1 (1988).
33. J. Hewett et al.(2012), 229 pages.
34. A. Czarnecki, W. J. Marciano, and K. Melnikov, AIP Conf.Proc.
435, 409–418 (1998).
35. R. Kitano, M. Koike, and Y. Okada, Phys Rev D, 66, 096002
(2002).
36. W. J. Marciano, T. Mori, J. M. Roney, Ann.Rev.Nucl.Part.Sci.
58, 315–341 (2008).
37. M. Raidal, A. van der Schaaf, I. Bigi, M. Mangano, Y. K.
Semertzidis et al., Eur.Phys.J. C57, 13–182 (2008).
38. V. Cirigliano, R. Kitano, Y. Okada, P. Tuzon, Phys Rev D, 80,
013002 (2009).
39. W. H. Bertl et al., Eur.Phys.J. C47, 337–346 (2006).
40. R. K. Kutschke (2011).
41. A. Kurup, Nucl.Phys.Proc.Suppl. 218, 38-43 (2011).
42. R. Tschirhart, Nucl.Phys.Proc.Suppl. 210-211, 203-205
(2011).
43. R. Barlow, Nucl.Phys.Proc.Suppl. 218, 44-49 (2011).
44. D. Asner et al.(2010), Long author list - awaiting
processing.
45. B. Aubert et al., Phy Rev Lett 104, 021802 (2010), 7 pages, 2
encapsulated postscript figures, submitted to Physical Review
Letters.
46. Y. Miyazaki et al., Phys Lett B, 251-257 (2011), Long author
list - awaiting processing.
47.M. Bona et al.(2007).
48. T. A. et al. (Belle II)(2010).
49. K. Hayasaka, Journal of
Physics: Conference Series, 171(1), 012079 (2009).
50. M. Giffels, J. Kallarackal, M. Kramer, B. O’Leary, A. Stahl,
Phys Rev D,77, 073010 (2008).
51. P. Seyfert(May) (2012), Talk given at Flavour Physics and CP
Violation 2012, Hefei, Anhui, China, 21 - 25May 2012.
52. J. Albrecht and et al. (LHCb)(May) (2012), Linked to
LHCb-ANA-2011-100.
53. G. Altarelli and F. Feruglio, Rev.Mod.Phys. 82, 2701-2729
(2010).
54. L. Calibbi, Z. Lalak, S. Pokorski, R Ziegler, (2012).
55. D. Wyler L. Wolfenstein, Nucl.Phys. B218, 205 (1983).
56. J. Bernabeu, A. Santamaria, J. Vidal, A. Mendez, J. Valle, Phys
Lett B, 187, 303 (1987).
57. A. Ilakovac, A. Pilaftsis, Nucl.Phys. B437, 491 (1995).
58. D. Tommasini, G. Barenboim, J. Bernabeu, C. Jarlskog,
Nucl.Phys. B444, 451-467 (1995).
59. Pilaftsis A, Phys Rev Lett, 95, 081602 (2005).
60. Pilaftsis A, Underwood T E, Phys Rev D, 72(2005)113001;
doi.org/10.1103/PhysRevD.72.11300
61. Kersten J, Smirnov A Y, Phys Rev D, 76(2007)073005;
doi.org/10.1103/PhysRevD.76.073005
62. Mohapatra R N, Valle J W F, Phys Rev D,34(1986) 1642.
63. Gonzalez-Garcia M C, Valle J W F, Phys Lett B,
216(1989)360.
64. Kovalenko S, Lu Z, Schmidt I, Phys Rev D, 80(2009)073014;
doi.org/10.1103/PhysRevD.80.073014
65. A. Atre, T. Han, S. Pascoli, B. Zhang, JHEP 0905, 030
(2009).
66. Deppisch F F, Bhupal Dev P S, Pilaftsis A, New J Phys,
17(2015)075019.
67. A. Pilaftsis, Nucl. Phys. B504, 61-107 (1997).
68. A. Pilaftsis, Z. Phys. C55, 275-282 (1992).
69. Khachatryan V et al., Phys Lett B,748(2015)144-166;
doi:10.1016/j.physletb.2015.06.070
70. S. Glashow(1980), ed. M. Levy et al. (Plenum, New York), p.
707.
71. L. J. Hall, V. A. Kostelecky, S. Raby, Nucl. Phys. B267, 415
(1986).
72. F. Borzumati and A. Masiero, Phys. Rev. Lett. 57, 961
(1986).
73. R. Barbieri and L. J. Hall, Phys Lett B, 338, 212-218
(1994).
74. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, Phys Rev D, 53,
2442-2459 (1996).
75. J. Hisano, D. Nomura, Phys Rev D, 59, 116005 (1999).
76. J. A. Casas, A. Ibarra, Nucl. Phys. B618, 171-204 (2001).
77. A. Kageyama, S. Kaneko, N. Shimoyama, M. Tanimoto, Phys Rev D,
65, 096010 (2002).
78. F. Deppisch, H. Paes, A. Redelbach, R¨uckl R, Y. Shimizu, Eur.
Phys. J. C, 28(2003)365-374.
79. F. Deppisch, H. P¨as, A. Redelbach, R. R¨uckl, Y. Shimizupp.
1012–1017 (2002).
80. F. Deppisch, H. P¨as, A. Redelbach, R. R¨uckl, Y. Shimizu,
Nucl.Phys.Proc.Suppl. 116, 316-320 (2003).
81. R. S. Chivukula and H. Georgi, Phys Lett B, 188, 99
(1987).
82. L. Hall, L. Randall, Phys Rev Lett, 65, (1990)2939-2942.
83. G. D’Ambrosio, G. Giudice, G. Isidori, A. Strumia, Nucl Phys B,
645(2002)155-187.
84. Cirigliano V, Grinstein B, Isidori G, Wise M B, Nucl Phys B,
728(2005)121-134.
85. F. An et al., Phys Rev Lett, 108, (2012) 171803, 5 figures.
Version to appear in Phys. Rev. Lett.
86. J. Ahn et al.(2012).
87. Das S, Deppisch F, Kittel O, Valle J, Phys Rev D,
86(2012)055006; doi.org/10.1103/PhysRevD.86.055006
88. Pati J C, Salam A, Phys Rev D, 10(1974)275-289.
89. R. Mohapatra and J. C. Pati, Phys Rev D, 11, 2558 (1975).
90. G. Senjanovic and R. N. Mohapatra, Phys Rev D, 12, 1502
(1975).
91. P. Duka, J. Gluza, and M. Zralek, Annals Phys. 280, 336–408
(2000).
92. V. Cirigliano, A. Kurylov, M. Ramsey-Musolf, P. Vogel, Phys Rev
D, 70, 075007 (2004).
93. F. Deppisch, H. P¨as, A. Redelbach, R. R¨uckl, Y. Shimizu, Phys
Rev D, 69, 054014 (2004).
94. J. Aguilar-Saavedra, F. Deppisch, O. Kittel, J. Valle, Phys Rev
D, 091301 (2012).
95. F. F. Deppisch, L. Graf, S. Kulkarni, S. Patra, W. Rodejohann,
N. Sahu, U. Sarkar, Phys Rev D, 93(1), 013011 (2016).
96. F. F. Deppisch, N. Desai, and J.W. F. Valle, Phys Rev D, 89(5),
051302 (2014).
97. Keung W Y, Senjanovic G, Phy Rev Lett, 50(1983)1427.
98. M. Nemevsek, F. Nesti, G. Senjanovic, and Y. Zhang, Phys Rev D,
83, 115014 (2011).
99. Deppisch F F, Gonzalo T E, Patra S, Sahu N, Sarkar U,
Phys Rev D, 90(2014)053014.
100. Khachatryan V et al., Eur Phys J C, 74(11), (2014) 3149.
101. Allanach B, Kom C, P¨as H, Phys Rev Lett,
103(2009)091801.
102. Hirsch M, Klapdor-Kleingrothaus H V, Kovalenko S G, Phys Rev
D, 54(1996)4207-4210.
103. F. F. Deppisch, J. Harz, and M. Hirsch, Phys Rev Lett,
112(2014)221601;doi
104. F. F. Deppisch, J. Harz, M. Hirsch, W. C. Huang, H. Ps, Phys
Rev D, 92(2015)036005.
105. M. Fukugita, T. Yanagida, Phys Lett B,174, 45 (1986).
106. V. A. Kuzmin, V. A. Rubakov, M. E. Shaposhnikov, Phys. Lett.
B, 155, (1985) 36.
107. F. Deppisch, H. P¨as, Phys.Rev.Lett. 98, (2007) 232501.
108. M. Doi, T. Kotani, H. Nishiura, E. Takasugi, Prog.Theor.Phys.
69, (1983) 602.
109. Deppisch F, Jackson C, Nasteva I, Soldner-Rembold S, Prog Part
Nucl Phys, 64(2010)278-280.
110. Hirsch M, Staub F, Vicente A, Phys Rev D, 85(2012)113013;
doi.org/10.1103/PhysRevD.85.113013
111. A. Abada, D. Das, A.
Vicente, C. Weiland, JHEP 1209, 015
(2012)Vol.
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol 25, No 10 (2016) 1403-1412
EDMS of Closed-shell Atoms: An example of Xe atom
Koichiro Asahia, b, Tomoya Satoa, b and Yuichi Ichikawa a,b
aNishina Center, RIKE, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
bDepartment of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
___________________________________________________________________________________________________________________________________
Current status of studies of electric dipole moments (EDMs) in the site of closed-shell atoms is discussed. Although the EDM of a Hg atom is the best confined EDM among all the particles ever studied, it includes contributions from multiple sources of different physics origins, the most important of which are CT, and , and therefore the determination of sizes of the three sources separately requires another two EDMs in this site to be known. For this reason the improvement in the accuracy of Xe EDM would be of crucial significance. A setup for the Xe EDM experiment using a nuclear spin oscillator scheme is under development.© Anita Publications. All rights reserved..
Keywords:Electric dipole moments (EDMs), Nuclear spin,Standard Model (SM)
Total Refs: 37
1. Aad G et al. (ATLAS Collaboration), Phys Lett
B, 716(2012)1-29; doi:10.1016/j.physletb.2012.08.0202.
2. Chatrchyan S, et al (CMS
Collaboration), Phys Lett B, 716(2012)30-61; doi:
10.1016/j.physletb.2012.08.021
3. Baak M, Goebel M, Haller J,
Hoecker A, Kennedy D, Kogler R, Moenig K, Schott M, Stelzer J, Eur
Phys C, 72 (2012)2205;
doi:
10.1140/epjc/s10052-012-2205-9
4. Erler J, Ramsey-Musolf M J,
Prog Part Nucl Phys, 54(2005)351-442; doi:
10.1016/j.ppnp.2004.08.001
5. Cirigliano V, Li Y, Profumo
S, Ramsey-Musolf M J, J High Energy Phys, 01(2010)002;
doi:10.1007/JHEP01(2010)002
6. Schiff L I, Phys Rev,
132(1963)2194-2200.
7. Ginges J S M, Flambaum V V,
Phys Rep, 397(2004)63-154.
8. Engel J, Ramsey-Musolf M J,
van Kolck U, Prog Part Nucl Phys, 71(2013)21-27.
9. Haxton W C, Henley E M,
Phys Rev Lett, 51(1983)1937-1940.
10. Ban S, Dobaczewski J, Engel J, Shukla
A, Phys Rev C, 82(2010)015501; doi:
10.1103/PhysRevC.82.015501
11. Dzuba V A, Flambaum F F, Ginges J S M,
Kozlov M G, Phys Rev A, 66 (2002) 012111; doi:
10.1103/PhysRevA.66.012111
12. Yoshinaga N, Higashiyama K, Arai R,
Teruya E, Phys Rev C, 89(2014)045501; doi:
10.1103/PhysRevC.89.045501
13. Dzuba V A, Flambaum F F, Silverstrov P
G, Phys Lett B, 154(1985)93-95.
14. Singh Y, Sahoo B K, Das B P, Phys Rev
A, 89(2014)030502(R); doi.org/10.1103/PhysRevA.89.030502
15. Latha K V P, Angom D, Das B P,
Mukherjee D, Phys Rev Lett, 103(2009)083001;
doi:10.1103/PhysRevLett.103.083001
16. Latha K V P, Amjith P R, Phys Rev A,
87(2013)022509; doi: 10.1103/PhysRevA.87.022509
17. Dobaczewski J, Engel J, Phys Rev Lett,
94 (2005) 232502; doi: 10.1103/PhysRevLett.94.232502
18. Ellis J, Lee J S, Pilaftsis A, J High
Energy Phys, 02(2011)045; doi:10.1007/JHEP02(2011)045
19. Chupp T, Ramsey-Musolf M, Phys Rev C,
91(2015)035502; doi: 10.1103/PhysRevC.91.035502
20. Fukuyama T, Int J Mod Phys A,
27(2012)1230015; doi: 10.1142/S0217751X12300153
21. Fukuyama T, Asahi K, Int J Mod Phys A,
31(2016)1650082; doi: 10.1142/S0217751X16500822
22. Graner B, Chen Y, Lindahl E G, Heckel
R, Phys Rev Lett, 16(2016)161601;
doi:10.1103/PhysRevLett.116.161601
23. Parker R H, Dietrich M R, Kalita M R,
Lemke N D, Bailey K G, Bishof M, Greene J P, Holt R J, Korsch W, Lu
Z -T, Mueller P, O'Connor T P,
Singh
J T, Phys Rev Lett, 114(2015)233002; doi:
10.1103/PhysRevLett.114.233002
24. Tardiff E R, Rand E T, Bal G C, Chupp
T E, Garnsworthy A B, Garrett P, Hayden M E, Kierans C A, Lorenzon
W, Pearson M R, Schaub C,
Svensson
C E, Hyperfine Interact, 225(2014)197-206; doi:
10.1007/s10751-013-0898-2
25. Kuchler F, Fielinger P, Wurm D, EPJ
Web Conf. 66(2014)5011; doi: 10.1051/epjconf/20146605011
26. Inoue T, Furukawa T, Yoshimi A, Nanao
T, Chikamori M, Suzuki K, Hayashi H, Miyatake H, Ichikawa Y,
Tsuchiya M, Hatakeyama N, Kagami S,
Uchida
M, Ueno H, Matsuo Y, Fukuyama T, Asahi K, Eur Phys J: D, 70(2016)
129; doi: 10.1140/epjd/e2016-70034-8
27. Rosenberry M A, Chupp T E, Phys Rev
Lett, 86(2001)22; doi: 10.1103/PhysRevLett.86.22
28. (a) Cho D, Sangster K, Hinds E A, Phys
Rev Lett, 63(1989)2559-2562.
(b) Cho D,
Sangster K, Hinds E A, Phys Rev A, 44(1991)2783-2799.
29. Auerbach N, Flambaum F F, Spevak V,
Phys Rev Lett, 76(1996)4316-4319.
30. Yoshimi A, Asahi K, Sakai K,Tsuda M,
Yogo K, Ogawa H, Suzuki T, Nagakura M, Phys Lett A,
304(2002)13-20.
31. Inoue T, Furukawa T, Nanao T, Yoshimi
A, Suzuki K,Chikamori M, Tsuchiya M, Hayashi H, Uchida M, Asahi K,
Phys Procedia, 17(2011)100-103;
doi:
10.1016/j.phpro.2011.06.024
32. Furukawa T, Inoue T, Nanao T, Yoshimi
A, Tsuchiya M, Hayashi H, Uchida M, Asahi K, J Phys Conf Ser, 312
(2011)102005;
doi:
10.1088/1742-6596/312/10/102005
33. Yoshimi A, Inoue T, Furukawa T, Nanao
T, Suzuki K,Chikamori M, Tsuchiya M, Hayashi H, Uchida M,
Hatakeyama N, Kagami S, Ichikawa Y,
Miyatake
H, Asahi K, Phys Lett A, 376(2012)1924; doi:
10.1016/j.physleta.2012.04.043
34. Ichikawa Y, Chikamori M, Ohtomo Y,
Hikota E, Sakamoto Y, Suzuki T, Bidinosti C P, Inoue T, Furukawa T,
Yoshimi A, Suzuki K, Nanao T,
Miyatake
H, Tsuchiya M, Yoshida N, Shirai H, Ino T, Ueno H, Matsuo Y,
Fukuyama T, Asahi K, European Physical Journal: Web of Conferences,
66 (2014)05007.
35. Sato T, Study of spin maser
comagnetometry for the Xe atomic EDM experiment, Thesis, Tokyo
Institute of Technology, 2016;
(in
preparation for publication)
36. Baron J, Campbell W C, DeMille D,
Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R,
Kirilov E, Kozyryev I, O’Leary B R,
Panda C D, Parsons M F,
Petrik E S, Spaun B, Vutha A C, West A D, (ACME Collaboration),
Science, 343(2014)269-272.
37.
Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R, Hinds E
A, Nature, 473(2011)493-496.
___________________________________________________________________________________________________________________________________
© ANITA PUBLICATIONS
All rights reserved
Designed & Maintained by
Manoj
Kumar