An International Peer Reviewed Research Journal


SSN : 0971 - 3093

Vol 26, No 8-10, August-October, 2017

Asian Journal of Physics                                                                                                    Vol. 26 No 8-10, 2017, 285-290

Time-Space Quantum Entanglement

Francis T S Yu
Emeritus Evan Pugh (University Professor of Electrical Engineering)
Penn State University, University Park, PA 16802, USA


In writing this article, we started with fundamental differences between Science and Mathematics. One is physical reality and other is abstract reality. By using exact mathematics to analyze approximated science, it is not a guarantee to obtain reliable and accurate solutions. Since we live in a Temporal Subspace, every substance within universe obeys the laws of science and the rule of time.  We will show instant Quantum Entanglement at a large distance only existed in a Timeless Space. But Timeless Space is not a Temporal Space and it cannot be existed within a temporal space. Particle Entanglement has to be at least two to tangle (it takes two to tangle). Since every entanglement involves time and space, Temporal and Spatial Entanglement can be defined. We have also shown that, Quantum entanglement is operating within the Certainty Limit of Heisenberg. In view of the Einstein’s Relativity, Quantum Entanglement can be extended to the Relativistic Regime; namely Relativistic Quantum Entanglement. © Anita Publications. All rights reserved.

Keywords: Temporal Subspace, Quantum Entanglement, Timeless Space

Total Refs: 11

    1.    Yu FT S, Time: The Enigma of Space”, Asian J  Phys,  26(2017), No.3, 00-00, 2017.
    2.    W. Heisenberg W, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,” Zeitschrift für Physik,   43(1927)172.
    3.   W. Pauli, “Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren”,   Zeitschrift für Physik 31, 765(1925).
    4.    F. T. S. Yu, “Science and the Myth of Information,” Asian Journal of Physics, Vol. 24, No. 12, 1823-1836, (2015). 
    5.   L. J. Cultrona, E. N. Leith, L. J. Porcello and W. E. Vivian, “On the application of Coherent Optical Processing Techniques to Synthetic-Aperture Radar,” Proc. IEEE, 54, 1026 (1966).
    6.    D. Gabor, “A New Microscope Principle,” Nature 161, 777 (1948).
    7.    J.  A.  Wheeler, W.  H. Zurek, Quantum Theory and Measurement. Princeton University Press. Princeton, 2014.
    8.    A. Einstein, B. Podolsky, N. Rosen N; Podolsky,”Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”. Phys. Rev. 47 (10): 777–780 (1935).
    9.   E. Schrödinger E,”Discussion of probability relations between separated systems”. Mathematical Proceedings of the Cambridge Philosophical Society. 31 (4): 555–563 (1935).
    10.  Schrödinger E, Probability relations between separated systems, Mathematical Proceedings of the Cambridge Philosophical Society, 32 (1936) 446-452.
    11.  Yu F TS, Introduction to Diffraction, Information Processing and Holography, (MIT Press, Cambridge, Mass), 1973.


Asian Journal of Physics                                                                                                    Vol. 26 No 8-10, 2017, 291-298


Applications of high-resolution cavity ring-down spectroscopy
for non-invasive medical diagnostics

Manik Pradhan
 S N Bose National Centre for Basic Sciences, Salt Lake, Sector III, Kolkata-700 106, India

Recent progress in the development of external-cavity quantum cascade lasers (EC-QCLs) in the mid-IR spectral region may be effective for high-resolution spectroscopic applications and multiple-trace gas detection. When QCLs are employed in the high-finesse optical cavity-enhanced spectroscopy techniques such as cavity ring-down spectroscopy (CRDS), the simultaneous and real-time detection of numerous trace species in exhaled breath are possible with ultra-high sensitivity and molecular specificity. In this short article, we briefly describe the basic principle of CRDS technique, its principal advantages and one of the potential application areas of CRDS method, in particular in the field of non-invasive medical diagnosis of diseases through breath analysis. © Anita Publications. All rights reserved.
Keywords: External-cavity quantum cascade lasers (EC-QCLs), Cavity ring-down spectroscopy (CRDS)

Total Refs : 20

    1.    Risby T H, Tittel F K, Opt Engg, 49(2010)111123; doi:10.1117/1.3498768
    2.    Kim S, Young C, Vidakovic B, Gabram-Mendola S G A, Bayer C W, Mizaikoff B, IEEE Sensors J, 10(2010)145-158.
    3.    Philips M, Sci Am. (Int. Ed.),  July (1992), p 52
    4.    Wysocki G,  Lewicki R, Curl R F, Tittel F K, Diehl L, Capasso F, Troccoli M, Hofler G, Bour D, Corzine S, Maulini R, Giovannini M, Faist J,

Appl Phy B, 92(2008)305-311.
    5.    Tittel F K, Richter D, Fried A, Top Appl Phys, 89(2003)458-529.
    6.    Banik G D, Som S, Maity A, Pal M, Maithani S, Mandal S, Pradhan M. Anal Methods, 9(2017)2315-2320.
    7.    De A, Banik G, Maity A, Pal  M, Pradhan M, Opt Lett, 41(2016)1949-1952.
    8.    O’Keefe A, Deacon D A G, Rev Sci Instrumen, 59(1988)2544;
    9.    Scherer J J, Paul J B,  O'Keefe A, Saykally R, Chem Rev, 97(1997)25-51.
    10.    Wheeler M D, Newman S M, Orr-Ewing A J, Ashfold M N R, J Chem Soc Faraday Trans, 94(1998)337-351.
    11.    Mazurenka M I, Orr-Ewing A J, Peverall P, Ritchie GAD, Ann Rep C, 101(2005)100-142.
    12.    Wheeler M D, Orr-Ewing A J, Ashfold M N R, J Chem Phys, 107(1997)7591;
    13.    Fawcett B L, Parks A M, Shallcross D E, Orr-Ewing A J, Phys Chem Chem Phys, 4(2002)5960-5965.
    14.    Bechtel K L, Zare R N, Kachanov A A, Sanders S S, Paldus B A, Anal Chem, 77(2004)1177-1182.
    15.    Pipino A C R, Hudgens J W, Huie R E, Rev Sci Instrum, 68(1997)2978;
    16.    Förstermann U, Sessa W C, Eur Heart J, 33(2012)829-837.
    17.    Coleman J W, Int Immunopharmacol, 1(2001)1397-1406.
    18.    Mathew T L, Pownraj P, Abdulla S, Pullithadathil B, Diagnostics, 5(2015)27-60.
    19.    Ghosh C, Banik G, Maity A, Som S, Chakraborty A, Selvan C, Ghosh S, Chowdhury S, Pradhan M, Scientific Reports, 5(2015)8137;

doi: 10.1038/srep08137
    20.    Ghosh C, Mukhopadhyay P, Ghosh S, Pradhan M, Scientific Reports, 5(2015)11959; doi: 10.1038/srep11959


Asian Journal of Physics                                                                                                    Vol. 26 No 8-10, 2017, 299-308


Effect of sputtering power on structural, morphological and optical properties of Zinc oxide thin films

Beer Pal Singha*, Vinay Kumarb,  and Ashwani Kumarc
 aDepartment of Physics, CCS University Campus, Meerut- 250 004 , India
bDepartment of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee- 247 667, India
cNanoscience Laboratory, Institute Instrumentation Centre, I I T Roorkee, Roorkee- 247 667, India

In this work, we report the synthesis of zinc oxide (ZnO) thin films using reactive magnetron sputtering technique and the effect of sputtering power (40, 60 and 80 W)  on their structural, morphological and optical properties. The  newly synthesized thin films were characterised using powder X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray analysis (EDXA) and UV-NIR visible spectroscopy. XRD analysis exhibited the hexagonal wurtzite structure with increase in average crystallite size and hydrophobicity with the increase of sputtering power. The contact angle of ZnO thin films were determined by contact goniometer. ZnO thin films deposited with low sputtering power (40W) exhibit higher optical transmittance (T~82 %) and larger band gap (~3.3 e V) as evident from transmittance measurements in the wavelength range from 300 to 800 nm. © Anita Publications. All rights reserved.
Keywords: ZnO thin films, Reactive sputtering, Contact angle, Optical properties.

Total Refs : 28

    1.    Lee K M, Lai C W, K S, Juan J C, Recent developments of zinc oxide based photocatalyst in water treatment technology: A review,

Water Res, 88(2016)428-448; doi:org/10.1016/j.watres.2015.09.045
    2.   Wei A, Pan L, Huang W, Recent progress in the ZnO nanostructure-based sensors, Mater Sci Engg B, 176 (2011)1409-1421;
    3.    Tan M, Qui G, Tinag Y P, Effects of ZnO nanoparticles on wastewater treatment and their removal behavior in a membrane bioreactor, Bioresour

Technol, 185(2015)125-133;
    4.    Bae J, Song M K, Park Y J, Kim J M, Liu M, Wang Z L, Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible

Energy Storage, Angewandte Chemie, 50(2011)1-6; doi: 10.1002/anie.201006062
    5.    Rodnyi P A, Khodyuk I V, Optical and Luminescence Properties of Zinc Oxide, Opt & Spectrosc, 111(2011)776-785.
    6.    Ye Changhui, Fang Xiaosheng, Hao Yufeng, Teng Xuemei, Zhang Lide, Zinc Oxide Nanostructures:  Morphology Derivation and Evolution,

J Phys Chem B, 109(2005)19758-19765.
    7.    Elkady M F, Hassan H S, Hafez E E,  Ahmed F, Construction of Zinc Oxide into Different Morphological Structures to be Utilized as Antimicrobial

Agent against Multidrug Resistant Bacteria, Bioinorg Chem Appl, 2015(2015)1-20; doi:org/10.1155/2015/536854.
    8.    Šarića A, Štefanića G, Dražićb G, Gotića M, Solvothermal synthesis of zinc oxide microspheres, J Alloys Compd, 652(2015)91-99.
    9.    Wallace R, Brown P, Brydson R, Wegner K, Milne S J, Synthesis of ZnO nanoparticles by flame spray pyrolysis and characterization protocol,

J Mater Sci, 48(2013)6393-6403.
    10.  Rana A H  S, Kang Mingi, Kim Hyun-Seok, Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition

of Alternative Microwave-assisted Methods to Address Growth Stoppage, Sci Rep, 6(2016)1-13.
    11.  Vaghayenegar M, Kermanpur A, Abbasi M H, Formation mechanism of ZnO nanorods produced by the electromagnetic levitational

gas condensation method, Scientia Iranica, 18(2011)1647-1651.
    12.  Chen Z, Shum K, Salagaj T, Zhang W, Strobl K, ZnO Thin Films Synthesized by Chemical Vapor Deposition, IEEE,

978(2010)1-6; doi: 10.1109/LISAT.2010.5478331
    13.  Azizian-Kalandaragha Y,  Khodayarib Ali, Behboudniac M, Ultrasound-assisted synthesis of ZnO semiconductor nanostructures, Mat Sci

Semicon Proc, 12(2009)142-145.
    14.  Li Zhengwei, Gao W, ZnO thin films with DC and RF reactive sputtering, Mat Lett, 58(2004)1363-1370.
    15.  Youssef S, Combette P, Podlecki J,  Al Asmar R, Foucaran A, Structural and optical characterization of ZnO thin films deposited by reactive

rf magnetron sputtering, Cryst Growth Des, 9(2009)1088-1094.
    16.  Hoon Jian-Wei, Chan Kah-Yoong, Krishnasamy Jegenathan, Tou Teck-Yong, Knipp Dietm; Direct current magnetron sputter-deposited ZnO

thin films, Appl Surf Sci, 257(2011)2508-2515.
    17.  Mishra P K, Gautam Y K, Kumar A, Jain R K, Prasad J N, Choudhary A K, Chandra R, Thickness dependent structural, optical and electrical

properties of CuIn0.8Ga0.2Se2 thin films deposited by pulsed laser deposition, AIP Conf Proc,1576(2014)33-37.
    18.  Szymańskaa Magdalena, Gierałtowska Sylwia, Wachnicki Łukasz, Grobelny Marcin, Makowska Katarzyna, Mroczyński Robert, Effect

of reactive magnetron sputtering parameters on structural and electrical properties of hafnium oxide thin films, Appl Surf Sci, 301(2014)28-33.
    19.  Kwak D J, Park M W, Sung Y M, Discharge power dependence of structural and electrical properties of Al-doped ZnO conducting film

by magnetron sputtering, Vacuum, 83(2009)113-118.
    20.  Yan L T, Rath J K, Schropp R E I, Electrical properties of vacuum-annealed titanium-doped indium oxide films, Appl Surf Sci, 257(2011)9461-9465.
    21.  Davea V, Gupta H O, Chandra R, Nanostructured hydrophobic DC sputtered inorganic oxide coating for outdoor glass insulators,

Appl Surf Sci, 295(2014)231-239.
    22.  Dave P Y, Rawal S K, Synthesis and studies of sputterd deposited ZnO films, Res Jr Mat Sci, 5(2017)13-16,
    23.  Wang D, Zhu X, Fang Y, Sun J, Zhang C, Zhang X, Simultaneously composition and interface control for ZnO-based dye-sensitized solar

cells with highly enhanced efficiency,  NANOSO, 10(2017)1-8.
    24.  Tauc J, Amorphous and Liquid Semiconductor, (Plenum Press, New York), 1974, p 159.
    25.  Manjunatha K N, Paul S, Investigation of optical properties of nickel oxide thin films deposited on different substrates,  Appl Surf Sci, 352(2015)10-15.
    26.  Daniel G P, Justinvictor V B, Prabitha B N, Joy K, Peter K, Thomas P V, Effect of annealing temperature on the structural and optical

properties of ZnO thin films prepared by RF magnetron sputtering, Physica B, 405(2010)1782-1786.
    27.  Manifacier J C, Gasiot J, Fillard J P, A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing

thin film, J Phys E, 9(1976)1002-1004.
    28.  Jerman M, Qiao Z, Mergel D, Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films mass density,

Appl Opt, 44(2005)3006-3012.


Asian Journal of Physics                                                                                                    Vol. 26 No 8-10, 2017, 309-314


Specific absorption rate for human skin due to radiation of cylindrical wave-front from transmission tower

Rahul Kaushik and P P Pathak
Department of Physics, Gurukula Kangri Vishwavidyalaya, Haridwar-249 404, india

The internal electric fields and specific absorption rate (SAR) are calculated for the human skin tissue due to cylindrical wave-front radiated from vertical sector antenna used in transmission tower of a mobile phone base station. The calculations have been made for Global System for Mobile communication (GSM), for 2G (GSM900) 935 - 960 MHz, for 2G (GSM1800) 1810 – 1880 MHz and 2110 – 2170 MHz for 3G. The obtained values are compared with the safe limits of exposure to electromagnetic radiations provided by the international agencies and found that the radiation of different frequencies come under the harmful limit for humans. © Anita Publications. All rights reserved.
Keywords: Radiation hazards, Bioelectromagnetics, Specific absorption rate, Skin depth.

Total Refs : 21

    1.    Pathak P P , Kumar V, Vats R P, Harmful electro-magnetic environment near transmission tower, Indian J Radio Space Phys, 32(2003)238-241.
    2.    Obahiagbon K, Isabona J, Specific Absorption Rate and Temperature rise Computation in Human Tissues due to Electromagnetic Field emission

from Mobile Phones at 900 MHz and 1800 MHz, Computing, Information Systems, Development Informatics & Allied Research Journal,  6(2015)53-62.
    3.    Kodera Sachiko, Gomez-Tames Jose, Hirata Akimasa, Masuda Hiroshi, Arima Takuji, Watanabe Soichi, Multiphysics and Thermal Response

Models to Improve Accuracy of Local Temperature Estimation in Rat Cortex under Microwave Exposure, Int J Environ Res Public Health,

14(2017)358; doi:10.3390/ijerph14040358
    4.    Kumar V, Sharma A, Kumar A, Ahmad M, Gupta G K, Interaction of Mobile Phone Waves with Tissues of Skeletal Muscles and Bone of

Human Beings, IOSRJPBS, 1(2012)06-16.
    5.    Kumar S, Pathak P P, Induced electric field inside and surface of human brain due to mobile phone radiation, J Natural Phys Sci (India), 20(2006)47-50.
    6.    Kumar G, Report on Cell Tower Radiation, “”, 2010.
    7.    Griffith D J, Introduction to electrodynamics, (Pearson education Inc., Upper Saddle River, New Jersey, USA), (Equation 9.63), 4th edn, 2013,p 399
    8.    Pathak P P, Bio-Thermal Effects due to Electromagnetic Radiations, XXIX General Assembly of the International Union of Radio Science

(URSI 08), Chicago IL, USA, 9-16 Aug 2008 paper no 2394(K03).
    9.    Polk C, Handbook of biological effects of electromagnetic Fields, (eds) C Polk, E Postow (CRC Press, Boca Raton USA), 1996, pp 1-23.
    10.  Hasgall P A, Di Gennaro F, Baumgartner C, Neufeld E, Gosselin M C, Payne D, Klingenböck A, Kuster N, “IT’ IS Database for thermal

and electromagnetic parameters of biological tissues,” Version 3.1, October 13th, 2016, doi: 10.13099/VIP21000-03-1.
    11.  Stuchly M A, Stuchly S S, Biological effects of electromagnetic fields, Phys Rev (USA), 61(1981)435-513.
    12.  Ali Usman, Ullah Sadiq, Khan Jalal, Shafi Muhammad, Kamal Babar, Basir Abdul, Flint James A, Seager Rob D, Design and SAR Analysis of

Wearable Antenna on Various Parts of Human Body, Using Conventional and Artificial Ground Planes, J Electr Eng Technol, 12(2016)1921-1932.
    13.  Pandey Shivi, Peak SAR reduction in human head using meta-material structure, Int J Eng Sci & Res Tech, 6(2017) 286-291.
    14.  Adair E R,  Peterson R C, Biological effects of radio frequency radiation, IEEE Transactions on microwave theory and techniques, 50(2002)953-962.
    15.  Karthik Varshini, Rao T R, Thermal Distribution based Investigations on Electromagnetic Interactions with the Human Body for Wearable Wireless

Devices, Progress in Electromagnetics Research M, 50(2016)141-150.
    16.  Guy A W, Non-ionizing radiation: Dissymmetry and interaction, ACGIH symposium, 1979, 75.
    17.  United States Federal communications commission (US FCC) safety guidelines, Radio frequency safety, OET (Office of Engineering &

Technology), Online available at
    18.  International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines for limiting exposure to time-varying electric,

magnetic and electromagnetic fields (up to 300 GHz), Health Phys, 74(1998)494-522.
    19.  National council on radiation protection and measurement (NCRP), Biological effects and exposure criteria for radio frequency

electromagnetic fields, Maryland, 1986.
    20.  Institute of electrical and electronics engineers (IEEE), IEEE Standards for Safety levels with Respect to Human Exposure to Radio

Frequency Electromagnetic Fields, 3 kHz to 300 GHz, C95-1, 2005.
    21.  World Health Organisation (WHO), Research Agenda for Radiofrequency Fields. Online available at



Asian Journal of Physics                                                                                                    Vol. 26 No 8-10, 2017, 315-322


Computational Investigations of quinacridone on silver and gold clusters:
Application to Nonlinear Optical and OLED devices

U Reeta Felscia, Beulah J M Rajkumar*
PG & Research Department of Physics, Lady Doak College, Madurai 625002, India

Interaction of quinacradone (QA) on silver and gold clusters has been investigated using computational methods. Hyperpolarizabilities computed theoretically point towards the possible use of QA adsorbed on Ag3 and Au3 in the rational design of NLO devices. The red shift in the simulated UV-Vis spectra confirms the process of adsorption on metal clusters, which is mainly due to the electrostatic interaction between the metals and QA. This interaction induces variations in the structural parameters of QA, which are confirmed by the NBO analysis and the MEP plot. Reduction in the hole reorganization energy along with the increment in hyperpolarizability suggest that QA adsorbed on silver cluster can be used as an effective material in OLED and NLO devices.© Anita Publications. All rights reserved..
Keywords: Quinacridotne, NBO, Nonlinear Optics, MEP,DFT.

Total Refs : 22

    1.      Wagner T, Györök M, Huber D, Zeppenfeld P, E. D.Głowacki, J PhysChem C Nanomater Interfaces. 118(2014)10911-10920.
    2.      Puerto E D, Domingo C, Ramos JVG, Cortes S S, Langmuir, 30(2014)753-761
    3.      I. Osaka, M. Akita,T. Koganezawa,K.Takimiya,Chem Mater, 24( 2012) 1235−1243
    4.      H. Li, C. Gu, L.Jiang, L. Wei, W. Hu, H. Fu, J, Mater Chem C, 1 (2013)2021-2027
    5.      Javan M J, Jamshidi Z, Tehrania Z A, Fattahi A, Org Biomol Chem, 10(2012)9373-9382
    6.      S. H.Jeong,H.Choi,J.Y.Kim,T.W.Lee, Part. Part. Syst Charact, 32(2015)164-175.
    7.      Sajan D, Chaitanya K, Safakath K, Philip R, Suthan T, Rajesh N P , Spectrochim Acta A, 106(2013)253-261.
    8.      U. R.Felscia, B.J.M.Rajkumar, P.Sankar, R.Philip, M.B.Mary, Spectrochim. Acta Part A 184 (2017) 286-293.
    9.      T. K Mandal, S. Dutta, S. K Pati, J. Chem. Sci., 121, (2009), 873–880.
    10.    Liu W L, Wang Z G, Zheng Z R, Li A H, Su W H, J Phys Chem A,112(2008)10580-10585.
    11.    Pho T V, Zalar P, Garcia A, Nguyen T Q, Wudl F, Chem Commun, 46(2010)8210-8212.;
    12.    Z. Jamshidi,H.Farhangian,Z.A.Tehrani, International Journal of Quantum Chemistry 113(2013)1062–1070
    13.    H.J.Song, D.H.Kim, E.J.Lee, J.R.Hawa, D.K.Moon,Solar EnergyMaterials&SolarCells123(2014)112–121
    14.   Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A (Jr), Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B, Liu B G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A, Gaussian 03, Revision B.03; Gaussian Inc.: Pittsburgh, PA, 2003.
    15.    S. I. Gorelsky, SWizard program, revision 2.0, <>.
    16.    R. Gayathri, M. Arivazhagan, Spectrochim.Acta. Part A 81 (2011) 242-250.
    17.    Krishnakumar V, Murugeswari K, Surumbarkuzhali N, Spectrochim Acta A, 114(2013)410-420.
    18.    S. Sanyal, A.K. Manna, S.K. Pati, J. Phys. Chem. C 117 (2013) 825−836.
    19.    H. Gao, TheorChemAcc 127 (2010) 759–763.
    20.    A. Suvitha, S. Periandy, S. Boomadevi, M. Govindarajan,Spectrochim. Acta. Part A 117 (2014) 216–224
    21.    A. Esme, S.G.Sagdinc, J Mol Struct, 1048 (2013)185-195
    22.    Balachandran V, Rajeswari S, Lalitha S, Spectrochim Acta A, 113(2013)268-280.



All rights reserved

Designed & Maintained by

Manoj Kumar