ap
An International Peer Reviewed Research Journal
AJP
SSN : 0971 - 3093
Vol 26, Nos 5-7, May-July, 2017
Asian Journal of
Physics
Vol. 26
No 5-7 (2017) 221-235
Nonlinear optical properties
with spectral analysis of
DL-Valinium nitrate- a DFT
approach
G Edwin
Sheelaa,C, D Manimaranb, I Hubert Joeb*,and V Bena
JothyC
aDepartment of Physics, Muslim Arts College,
Thiruvithancode-629 174, India
bCentre
for Molecular and Biophysics Research, Department of
Physics,
Mar
Ivanios College, Thiruvananthapuram-695 015,
India
cDepartment of Physics, Women’s Christian College,
Nagercoil-629 001, India
___________________________________________________________________________________________________________________________________
An
organic nonlinear optical (NLO) single crystal was synthesized by
slow solvent evaporation technique from aqueous solutions of
DL-valine and nitric acid (DLVN) at ambient temperature. The powder
X-ray diffraction of the grown crystal was recorded and indexed.
The optimized molecular structure, vibrational wavenumbers have
been calculated by using density functional method (B3LYP) with the
standard 6-311++G (d,p) basis set.. The normal coordinate analysis
has been performed for a systematic assignment of IR and Raman
bands with percentage PED. The strong hyperconjugative interaction
and charge delocalization that leads to the stability of the
molecule have been investigated with the aid of natural bond
orbital (NBO) analysis. The frontier molecular orbital were
constructed and the HOMO and LUMO energies were measured. The
optical absorption study reveals the transparency of the crystal in
the entire visible region and the lower edge was found to be 298
nm. Relative powder second harmonic generation (SHG) efficiency of
the grown crystal was tested by Kurtz and Perry powder technique. ©
Anita Publications. All rights reserved.
Keywords:
NLO, FT-IR, FT-Raman, NBO
Total
Refs : 37
1. C.C. Frazier, M.P. Cockerham, J.
Opt. Soc. Am. B 4 (1987) 1899-1903
2. P.N. Prasad,
D.J. Williams, in: Introduction to Nonlinear Effects in Molecules
and Polymers, Wiley, New York, 1991.
3. D.S. Chemla, J. Zyss
(Eds.), Nonlinear Optical Properties of Organic Molecules and
Crystals, Academic press, New York, 1987.
4. E. Blomstrand,
E.A. Newsholme, Nutrition 12 (1996) 485-490
5. K. Kirubavathi,
K. Selvaraju, R. Valluvan, N. Vijayan, S. Kumararaman, Spectrochim.
Acta A 69 (2008) 1283–1286.
6. K. Kirubavathi,
K. Selvaraju, N. Vijayan, S. Kumararaman, Spectrochim. Acta A 71
(2008) 288–291.
7. P. Srinivasan,
T. Kanagasekaran, R. Gopalakrishnan, Cryst. Growth Des. 8 (2008)
2340–2345.
8. Sweta Moitra,
Saikat Kumar Seth, Tanusree Kar, J. Cryst. Growth 312 (2010)
1977–1982.
9. C.R. Raja, A.A.
Joseph, Mater. Lett. 64 (2010) 108-110.
10. S. Moitra, T. Kar, J.
Cryst. Growth 310 (2008) 4539-4543.
11. T.K. Kumar, R.S. Selvaraj,
S. Janarthanan, Y.C. Rajan, S. Selvakumar, S. Pandi, M.S.
Selvakumar, D.P. Anand, Eur. Phys. J. Appl. Phys. 50 (2010)
20401.
12. C. Jesintha John, T.S.
Xavier, G. Lukose, I. Hubert Joe, Spectrochim. Acta, Part A 85
(2012) 66–73.
13. T. Joselin Beaula, D.
Manimaran, I. Hubert Joe, V.K. Rastogi, V. Bena Jothy, Spectrochim.
Acta, A 126(2014) 170–177.
14. B J M Rajkumar, V
Ramakrishnan, J Raman Spectrosc, 31 (2000)1107-1112
15. Ivan Nemec, Ivana Cisarova
, and Zdenek Micka J. Sol.St. Chem.158 (2001)1-13
16. Rao, S. N. &
Parthasarathy, R., Am. Crystallogr. Assoc. (Spring) . (1974)
129.
17. N. Srinivasan, B. Sridhar
and R. K. Rajaram Acta Cryst. E58 (2002) o95-o97.
18. Frisch M J, Trucks G W,
Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G,
Barone V, Mennucci B, Petersson G A,
Nakatsuji
H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng
G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J,
Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr.
Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J,
Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J,
Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi
M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V,
Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A
J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K,
Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S,
Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D
J, Gaussian 09, Rev. A.02, Gaussian, Inc., Wallingford, CT,
(2009).
19. Sundius T, J Mol Struct.
218(1990)321-326.
20. Sundius T, Vib Spectrosc.
29(2002)89-95.
21. Glendening E D, Badenhoop
J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Weinhold F,
NBO 3.1, Theoretical Chemistry Institute, University of Wisconsin,
Madison, 2001.
22. Pulay P, Fogarasi G, Pang
F, Boggs J E, J. Am. Chem. Soc. 101(1979)2550-2560.
23. Rauhut G, Pulay P, J.
Phys. Chem. 99(1995)3093-3100.
24. G. Socrates, Infrared
Characterization Group Frequencies, John Wiley, New York
(1980).
25. R.M.Silverstin,
F.X.Webster, Spectrometric Identification of organic compounds
sixth ed. Wiiley, Newyork, 1998.
26. B.C. Smith, Infrared
Spectral Interpretation A Systematic Approach, CRC Press,
Washington, DC, 1999.
27. G. Maroulis, J. Mol.
Struct. (Theochem) 633 (2003) 177-197.
28. N.B. Colthup, L.H. Daly,
S.E. Wiberley, Introduction to Infrared and Raman
Spectroscopy,Academic Press, New York, 1990.
29. S. Aruna, A. Anuradha, P.
C. Thomas, M. Gulam Mohamed, S.A. Rajaseker, M. Vimalan, G. Mani,
P. Sagayaraj, Ind. J. Pure and Applied Physics,
45
(2007) 524-528.
30. S. Debrus, H. Ratajczak,
J. Venturini, N. Pincon, J. Baran, J. Barycki, T. Glowiak, A.
Pietraszko, Synthetic Metals, 127(1-3) (2002) 99-104
31. E.D. Glendening, A.E.
Reed, J. E. Carpenter, F. Weinhold, “NBO Version 3.1”, Theoretical
Chemistry Institute and department of Chemistry, University of
Wisconsin, Madisan, (1998).
32. D. Xue, S. Zhang, J. Phys.
Chem. Sol, 57(1996)1321-1328
33. I. Fleming, Frontier
Orbital and Organic Chemical Reactions, Wiley, London, 1976.
34. K. Jug, Z.B. Maksic, in:
Z.B. Maksic (Ed.), Theoretical Model of Chemical Bonding,
Part 3, Springer, Berlin, 1991, p. 233.
35. S. Fliszar, Charge
Distributions and Chemical Effects, Springer, New York, 1983.
36. L. Xiao-Hong et al.,
Theor. Chem. 969 (2011) 27–34.
37. S.K. Kurtz, T.T. Perry, J
Appl Phys, 39 (1968) 3798-3813
___________________________________________________________________________________________________________________________________
Asian Journal of
Physics
Vol. 26
No 5-7, (2017)
237-248
Structural
and biological studies of 3-formyl-4-methoxyphenylboronic
acid:
density functional theory and molecular docking
approach
D
Manimarana, I Hubert Joea,*, Sunila
Abrahamb
aCentre
for Molecular and Biophysics Research, Department of Physics, Mar
Ivanios College,
Thiruvananthapuram-695
015, Kerala, India
bDepartment
of Physics, Christian College, Chengannur-689 122, Kerala,
India
___________________________________________________________________________________________________________________________________
Optimized geometry, hydrogen bonding
interactions and biological evaluation of
3-formyl-4-methoxyphenylboronic acid have been investigated using
vibrational spectroscopy techniques and molecular docking.
Blue-shifting of C-H...O and red-shifting of O-H...O stretching
wavenumbers confirm the presence of inter- and intra-molecular
hydrogen bonding. The vibrational mode assignment has been
performed on the basis of potential energy distribution by scaled
quantum mechanical force-field methodology. The structural
conformations of the molecule have been analyzed based on the
molecular orbital calculations. The biological activity of the
molecule has been evaluated with aurora-a kinease inhibited target
protein. © Anita Publications. All rights reserved.
Keywords: Boronic acid; DFT;
Molecular docking; FTIR; FT-Raman
Total Refs: 31
1. Hosmane NS (2012) Boron
Science: New Technologies and Applications, CRC Press, New
York
2. Yang W, Gao X, Wang B (2005) Biological and
Medicinal Applications of Boronic Acids. in: Hall DG (Ed) Boronic
Acids Preparation, Applications in Organic Synthesis and Medicine,
Wiley-VCH Verlag GmbH & Co., Weinheim, pp 481-507
3. James TD, Phillips MD, Shinkai S (2006)
Boronic Acids in Saccharide Recognition, RSC Publishing,
London
4. Guo Z, Shin I, Yoon J (2012) Chem Commn
48:5956
5. Frisch MJ, Trucks GW, Schlegel HB, Scuseria
GE, Robb M , Cheeseman JR, Scalmani G, Barone V, Mennucci B,
Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov
AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K,
Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai
H, Vreven T, Montgomery Jr, JA, Peralta JE, Ogliaro F, Bearpark M,
Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand
J, Raghavachari K, Rendell A, Burant JC, Iyengar S S, Tomasi J,
Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V,
Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin
AJ, Cammi R, Pomelli C, Ochterski J W, Martin RL, Morokuma K,
Zakrzewski VG, Voth GA, Salvador P, Dannenberg J J, Dapprich S,
Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ
(2009) Gaussian 09, Revision A.02, Gaussian Inc., Wallingford
CT
6. Becke AD (1993) J Chem Phys
98:5648
7. Becke AD (1988) Phys Rev A
38:3098
8. Lee C, Yang W, Parr RG (1988) Phys Rev
378:785
9. Rauhut G, Pulay P (1995) J Phys Chem
99:3093
10. Scott AP, Radom L (1996) J Phys Chem
100:16502
11. Pulay P, Fogarasi G, Pongor G, Boggs JE,
Vargha A (1983) J Amer Chem Soc 105:7037
12. Fogarasi G, Pulay P (1986) J Mol Struct
141:145
13. Sundius T (1990) J Mol Struct
218:321
14. Allen WD, Csaszar AG, Horner DA (1992) J Amer
Chem Soc 114:6834
15. Fogarasi G (1997) Spectrochim Acta A
53:1211
16. Baker J, Jarzecki AA, Pulay P (1998) J Phys
Chem A 102:1412
17. Sundius T (2002) Vib Spectrosc
29:89
18. Morris GM, Huey R, Lindstrom W, Sanner MF,
Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem
16:2785
19. Smith BC (1998) Infrared Spectral
Interpretation: a systematic approach, CRC Press, Washington
DC
20. Socrates G (1980) Infrared Characteristic
Group Frequencies, John Wiley & Sons, New York
21. Bellamy LJ (1954) The Infrared Spectra of
Complex Molecules, Wiley, New York
22. Colthup NB, Daly LH, Wiberley SE (1990)
Introduction to Infrared and Raman Spectroscopy, Academic Press,
New York
23. Silverstein RM, Webster FX, Kiemle DJ (1998)
Spectrometric Identification of Organic Compounds, John Wiley &
Sons, New York
24. Reed AE, Weinstock RB, Weinhold F (1985) J
Chem Phys 83:735
25. O’Boyle NM, Tenderholt AL, Langner KM (2008)
J Comp Chem 29:839
26. Felming I (1978) Frontier Orbitals and
Organic Chemical Reactions, John Wiley & Sons, New
York
27. Dennington R, Keith T, Millam J, Eppinnett K,
Hovell WL, Gilliland R (2003) GaussView version 3.1, Semichem Inc.,
Shawnee Mission KS
28. Sanner MF (1999) J Mol Graph Model
17:57
29. Heron NM, Anderson M, Blowers DP, Breed J,
Eden JM, Green S, Hill GB, Johnson T, Jung FH, McMiken HH J,
Mortlock AA, Pannifer AD, Pauptit RA, Pink J, Roberts NJ, Rowsell S
(2006) Bioorg Med Chem Lett 16:1320
30. Berman HM, Westbrook J, Feng Z, Gilliland G,
Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids
Res 28:235
31. Talarico LB, Zibetti RGM, Faria PCS, Scolaro
LA, Duarte MER, Noseda MD, Pujol CA, Damonte EB (2004) Int J Biol
Macromol 34:63
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol. 26 No 5-7, (2017) 249-261
Structural and spectral studies of non-linear crystal
L-Phenylalaninium Maleate
D R
Leenaraj and I. Hubert Joe*
Centre
for Molecular and Biophysics research, Department of
Physics,
Mar
Ivanios College, Thiruvananthapuram-695 015, India.
___________________________________________________________________________________________________________________________________
The single crystals of L-Phenylalaninium maleate are grown by slow evaporation technique and Fourier transform infrared and Raman spectra of the crystal was recorded and analyzed. The geometry, intermolecular hydrogen bonding and harmonic vibrational wavenumbers were calculated with the help of density functional theory method. A detailed interpretation of the vibrational spectra was carried out with the aid of potential energy distribution analysis. Vibrational analysis reveals the presence of O–H…O and N–H…O hydrogen bonding in the crystal. Theoretically predicted first order hyperpolarizability and HOMO─LUMO energy gap exhibits the non-linear optical activity. © Anita Publications. All rights reserved.
Total Refs : 49
1. Shen Y. R, The Principles of
Non-linear Optics . (Wiley, New York) 1984
2. Ledoux I, Zyss J, Int. J.
Nonlinear Opt. Phys. , 3(1994) 287
3. Andreazza P, Josse D, Lefaucheux F,
Robert M.C, Zyss J, Phys.Rev. B , 45(1992) 7640
4. Wang Z, Hagan D. J, Van Stryland
E. W, Zyss J, Vi-dakovik P, Torruellas E. W, J. Opt. Soc. Am. B
,14(1997) 76.
5. Castro E. A, Angel M, Arellano D,
Santos J. G, J. Org. Chem. , 66(2001) 6571
6. Bhat M. N, Dharmaprakash S. M, J.
Cryst. Growth , 236(2002) 376
7. Delfino M, Mol. Cryst. Liq. Cryst.
, 52(1979) 271
8. Tapati Mallik and Tanusree Kar,
J.Crystal Growth , 274(2005) 251
9. Young, V. R. J. Nutr. , 124(1994)
1517
10. Alagar M, Krishnakumar R. V, Natarajan S,
Acta Cryst. , E57(2001) o968
11. Yogam F, Vetha Potheher I, Vimalan M,
Jeyasekaran R, Rajesh Kumar T, Sagayaraj P, Spectrochim. Acta, Part
A , 95(2012) 369
12. Suresh J, Krishnakumar R. V, Natarajan S,
Acta Cryst. , E61(2005) 3625
13. Castro J. L, Lopez Ramırez M. R, Arenas J. F,
Otero J. C, J. Mol. Struct. , 744(2005) 887
14. Amalanathan M, Hubert Joe I, Rastogi V. K, J.
Mol. Struct. , 1006(2001) 513
15. Patil P. S, Dharmaprakash S. M, J. Cryst.
Growth , 305(2007) 218
16. Binoy J, Jose Abraham P, Hubert Joe I,
Jayakumar V. S, Pettit G.R, Nielsen O.F, J. Raman Spectrosc. ,
35(2004) 939
17. Sajan D, Binoy J, Pradeep B, Venkata Krishna
K, Kartha V. B, Hubert Joe I, Jayakumar V. S, Spectrochim. Acta A ,
60(2004) 173
18. Sajan D, Binoy J, Hubert Joe I, Jayakumar V.
S, Jacek Zaleski, J. Raman Spectrosc. , 36(2005) 221
19. Binoy J, Jose Abraham P, Hubert Joe I,
Jayakumar V. S, Aubard J, Nielsen O. F, J. Raman Spectrosc. ,
36(2005) 63
20. Frisch M. J, Trucks G. W, Schlegel H. B,
Scuseria G. E, Robb M. A, Cheeseman J. R, Zakrzewski V. G,
Montgomery J. A, Jr., R. E/Stratmann, Burant J. C, Dapprich S,
Millam J. M, Daniels A. D, Kudin K. N, Strain M. C, Farkas O,
Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C,
Adamo C, Clifford S, Ochterski J, Petersson G. A, Ayala P. Y, Cui
Q, Morokuma K, Malick D. K, Rabuck A. D, Raghavachari K,
Foresman B, Cioslowski J, Ortiz J. V, Baboul A. G, Stefanov B.
B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R,
Martin R. L, Fox D. J, Keith T, Al-Laham M.A, Peng C. Y,
Nanayakkara A, Challacombe M, P.M.W. Gill, Johnson B, Chen W, Wong
M. W, Andres J. L, Gonzalez C, Head-Gordon M, Replogle E. S,
Pople J. A, Gaussian 03, Revision C. 02, Gaussian, Inc, Wallingford
C. T , (2004).
21. Scott A. P, Radom L, J. Phys. Chem. ,
100(1996) 16503
22. Keresztury G, Holly S, Varga J, Besenyei G.
A, Wang Y, Durig J. R, Spectrochim. Acta A , 49(1993) 2007,
2019
23. Keresztury G, Chalmers J.M, Griffith P.R,
Raman Spectroscopy, Theory in Handbook of Vibrational Spectroscopy.
(John Wiley & Sons Ltd, New York) 2002.
24. Jamroz M. H, Vibrational Energy Distribution
Analysis: VEDA 4 Program, Drug Institute, Warsaw, Poland ,
(2004).
25. Varsanyi G, Vibrational Spectra of Benzene
Derivatives . (Academic Press, New York) 1969.
26. Mauricio Alcolea palafox, J. Phys. Chem. A ,
103(1999) 11366
27. Ravikumar C, Hubert Joe I, Sajan D, Chemical
Physics , 369(2010) 1
28. James C, Jayakumar V. S, Hubert Joe I, J.
Mol. Struct. , 830(2007) 56
29. Bellamy L. J, The infrared spectra of complex
molecules . (Chapman and Hall, London) 1980.
30. Colthup N. B, Daly L. H, Wiberley S. E,
Introduction to Infrared and Raman Spectroscopy. (Academic Press,
New York) 1990.
31. Dollish F. R, FateleyW. G, Bentley F. F,
Characteristic Raman frequencies of organic compounds . (John Wiley
& Sons: New York) 1997.
32. Smith B, Infrared Spectral Interpretation: A
Systematic Approach . (CRC press, Washington, DC 1999.
33. Hobza P, Havlas Z, Chem. Rev. , 100(2000)
4253
34. Ravikumar C, Hubert Joe I, Phys. Chem. Chem.
Phys. , 12(2010) 9452
35. Amalanathan M, Hubert Joe I, Irena Kostova,
J. Raman Spectrosc. , 78(2009) 1076
36. Xavier T. S, Naghmana Rashid, Hubert Joe I,
Spectrochim. Acta, Part A , 78(2011) 319
37. Socrates G , Infrared and Raman
Characteristic Group Frequencies: Tables and Charts, third ed.,
(Wiley, Chichester) 2001.
38. Vein D. L , Colthup N. B , Fateley W. G ,
Grasselli J. G , The Handbook of Infrared and Raman Characteristic
Frequencies of Organic Molecules . (Academic Press, New York)
1991.
39. Silverstein R. M, Webster F. X, Spectrometric
Identification of Organic Compounds . (Jonh Wiley and sons, New
York) 2003, 34.
40. Edsall T, Scheinberg H, J. Chem. Phys. ,
8(1940) 520
41. Hubert Joe I, Aruldhas G, Anbu kumar S,
Ramasamy P, J. Cryst. Res. Technol. , 29(1994) 685
42. Reva I. D, Stepanian S. G, Plokhotnichenko A.
M, Radchenko E. D, Sheina G. G, Yu Blagoi P, J. Mol. Struct. ,
318(1994) 1
43. Miec Z, Suste T, Baranovic G, Smrecki V,
Holly S, Keresztury G, J.Mol. Struct. , 348(1995) 229
44. Arenas J. F, Tocon I. L, Otero J. C, Marcos
J. I, J. Mol. Struct. , 349(1995) 29
45. Bredas J. L, Adant C, Tackx P, Persoons A,
Chem. Rev. , 94(1994) 243
46. Nalwa H. S, Hanack M, Pawlowski G, Engel M.
K, Chem. Phys. , 245(1999) 17
47. Burland D. M, Miller R. D, Walsh C. A, Chem.
Rev. 94(1994) 31
48. Adant M , Dupuis M , Bredas J L , Int. J.
Quantum Chem. , 56(1995) 49
49. Choi C.H , Kertesz M , J. Phys. Chem. A ,
10(1997) 3823.
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol. 26, No 5-7 (2017) 263-269
Study
of synthesis and characterization of iron oxide
(Fe3O4)
nanoparticles
using PVP as stabilizers
S Veena
Gopal and I Hubert Joe*
Centre
for Molecular and Biophysics research, Department of Physics, Mar
Ivanios College,
Thiruvananthapuram-695
015, India.
___________________________________________________________________________________________________________________
Presenting
one step process for the synthesis of iron Oxide nanoparticles,
aqueous colloid using the multifunctional Poly Vinyl Pyrollidone
(PVP), which electro statically complexes with aqueous Iron ions
(One precursor as Fe2+ from FeCl2), reduces them and subsequently
caps the nanoparticles [1]. The aqueous magnetic nano crystalline
colloids centrifuged and filtered. The prepared samples were
characterized by electronic spectra. Powdered XRD measurement shows
that the peak of the diffractogram is in well agreement with
theoretical data of Fe3O4. The crystalline size of the particles
ranges from7-16nm with the increasing concentration of Poly Vinyl
Pyrollidone (PVP). SEM studies shows that the agglomeration of the
particle is found sensitive to PVP concentration. By the addition
of PVP as a stabilizer, the particle was found separated which find
application in MRI contrast agent. © Anita Publications. All rights
reserved.
Keywords:
Boronic acid; DFT; Molecular docking; FTIR;
FT-Raman
Total Refs : 9
1. M. Aslam, E. A. Schultz, T. Sun, T. Meade, and
V. P. Dravid, “Synthesis of Amine-Stabilized Aqueous Colloidal Iron
Oxide Nanoparticles,” Crystal Growth & Design, vol. 7, no. 3,
pp. 471–475, Mar. 2007.
2. K. Babin, D. M. Goncalves,
and D. Girard, “Nanoparticles enhance the ability of human
neutrophils to exert phagocytosis by a Syk-dependent mechanism,”
Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1850,
no. 11, pp. 2276–2282, Nov. 2015.
3. Y.-W. Jun, J.-H. Lee, and
J. Cheon, “Nanoparticle Contrast Agents for Molecular Magnetic
Resonance Imaging,” Nanobiotechnology II, pp. 321–346.
4. W. Cacheris, J. Kaufman
Robert, J. Richard Thomas, and R. Grabiak, “5571498 Emulsions of
paramagnetic contrast agents for magnetic resonance imaging (MRI),”
Magnetic Resonance Imaging, vol. 15, no. 4, p. XV, Jan. 1997.
5. L.Lodhia,G.Mandarano, Grad
Cert,N.J Ferris, SF Cowell, “Synthesis Of Iron Oxide Nanoparticle
for MRI”, Bo Medical Imaging and
Intervention
Journal,2010,6(2).
6. R. Massart, “Preparation of
aqueous magnetic liquids in alkaline and acidic media,” IEEE
Transactions on Magnetics, vol. 17, no. 2, pp. 1247–1248, Mar.
1981.
7. SyamKumar ,”Studies on
Synthesis of Iron based Nano colloids by Chemical Reduction”,
Dessertation (2009)
8. R. Krishnaveni, “Synthesis
of iron oxide coated nickel oxide nanoparticles and its
characterization,” International Conference on Advanced
Nanomaterials & Emerging Engineering Technologies, Jul.
2013
9. H.-Y. Lee, S.-H. Lee, C.
Xu, J. Xie, J.-H. Lee, B. Wu, A. Leen Koh, X. Wang, R. Sinclair, S.
X. Wang, D. G. Nishimura, S. Biswal, S. Sun, S. H. Cho, and X.
Chen, “Synthesis and characterization of PVP-coated large core iron
oxide nanoparticles as an MRI contrast agent,” Nanotechnology, vol.
19, no. 16, p. 165101, Mar. 2008.
___________________________________________________________________________________________________________________________________
Asian Journal of Physics Vol. 26, No 5-7 (2017) 271-282
Space weather and ionospheric variability over low
latitudes
Kamsali
Nagaraja, B Praveen Kumar and S C Chakravarty
Department
of Physics, Bangalore University, Bengaluru -560 056,
India
___________________________________________________________________________________________________________________________________
A
real-time model has been used to generate grid based Vertical Total
Electron Content (VTEC) maps using ground based observation data
from a network of dual frequency GPS (Global Positioning System)
receivers deployed over the Indian region under the GAGAN (GPS
Aided Geo Augmented Navigation) project. The output of a 24-hour
model run of all stations includes hourly average values and
diurnal plots of VTEC with 1° × 1° resolution in
latitude-longitude. Apart from its utility for the navigation
purpose, this real-time model is potentially suited to study
ionosphere variations at high temporal and spatial resolutions.
Using the available multi-station data for the low solar activity
period of May 2007 to April 2008, the real-time model outputs are
further analyzed to obtain monthly average diurnal variations
grouped into equatorial (11-18° N) and anomaly (19-24° N) latitude
zones. These monthly average diurnal curves are also produced using
the IRI model under similar conditions. A comparison between the
present real-time model and IRI model results for the winter,
summer and equinoctial months show reasonably good agreement in
overall magnitudes but there are some differences in the overall
shape of the diurnal curve which appears much simplified for IRI
model. The day to day and latitudinal variability of the VTEC are
studied to understand the base level dynamics of the system. This
is required if the VTEC data is to be used to search for signals
pertaining to the space weather and geophysical phenomena. © Anita
Publications. All rights reserved.
Keywords:
TEC, GAGAN,Space weather ,Vertical Total Electron Content (VTEC),
GPS (Global Positioning System) , Equinoctial
months
Total Refs : 13
1. Rigler E J, Hill S M, Reinard A A, Steenburgh
R A, Solar thematic maps for space weather operations, Space
Weather,
10(2012)S08009;
doi:10.1029/2012SW000780
2. Manchester (IV) W B,
Gombosi T I, Roussev I, Ridley A, Zeeuw D L D, Sokolov I V, Powell
K G, Tóth G, Modeling a space weather event from the Sun to the
Earth: CME generation and interplanetary propagation, J Geophys
Res, 109(2004)A02107, doi:10.1029/2003JA010150,
3. Schrijver C J, Dobbins R,
Murtagh W, Petrinec S M, Assessing the impact of space weather on
the electric power grid based on insurance claims
for
industrial
electrical equipment, Space Weather, 12(2014)487-498,
doi:10.1002/2014SW001066, 2014
4. Jakowski N, Heise S,
Wehrenpfennig A, Schlüter S, Reimer R, GPS/GLONASS-based TEC
measurements as a contributor for space weather
forecast,
Journal of Atmospheric and Solar-Terrestrial Physics,
64(2002)729-735. norbert.jakowski@dlr.de
5. Bagiya Mala S, Joshi H P,
Iyer K N, Aggarwal M, Ravindran S, Pathan B M, TEC variations
during low solar activity period (2005–2007)
near
the Equatorial Ionospheric Anomaly Crest region in India, Ann
Geophys, 27(2009)1047-1057.
6. Chakravarty S C, A Novel
Approach to Study Regional Ionospheric Variations Using a Real-Time
TEC Model, Positioning,
5(2014)1-11;
doi: 10.4236/pos.2014.51001.
7. Budden K G, The propagation
of radio waves, (Cambridge University Press),1985.
8. Hofmann-Wellenhof B,
Lichtenegger H, Collins J, Global Positioning System, Theory and
Practice, 4th edn, (Springer-Verlag, Berlin,
Heidelberg,
New
York), 1992, p 389
9. Hoque M M, Jakowski N,
Mitigation of ionospheric mapping function errors, Proceedings of
the 26th International Technological Meeting of
the
Satellite
Division of the Institute of Navigation (ION GNSS+2013), Nashville,
TN, 1848-1855, September, 2013.
10. Acharya R, Nagori N, Jain N, Sunda S,
Regar S, Sivaraman M R, Bandopadhyay K, Ionospheric studies for the
implementation of GAGAN,
Indian
J Radio Space Phys, 36(2007)394-404.
11. Chakravarty S C, Kamsali Nagaraja,
Jakowski N, Variation of TEC and related parameters over the Indian
EIA region from ground and space
based
GPS observations during the low solar activity period of May
2007–April 2008, Advances in Space Research,
59(2017)1223-1233.
12. Akhoondzadeh M, Parrot M, Saradjian M
R, Electron and ion density variations before strong earthquakes (M
> 6.0) using DEMETER and GPS data,
Nat
Hazards Earth Syst Sci, 10(2010)7-18.
13. Hocke K, Schlegel K, A review of
atmospheric gravity waves and travelling ionospheric disturbances:
1982-1995, Ann Geophysicae, 14(1996)917-940.
___________________________________________________________________________________________________________________________________
© ANITA PUBLICATIONS
All rights reserved
Designed & Maintained by
Manoj
Kumar